超自反空间中使用新贪婪类基的稀疏逼近

IF 0.7 3区 数学 Q2 MATHEMATICS
F. Albiac, J. L. Ansorena, M. Berasategui
{"title":"超自反空间中使用新贪婪类基的稀疏逼近","authors":"F. Albiac, J. L. Ansorena, M. Berasategui","doi":"10.4064/sm220506-3-2","DOIUrl":null,"url":null,"abstract":"This paper is devoted to theoretical aspects on optimality of sparse approximation. We undertake a quantitative study of new types of greedy-like bases that have recently arisen in the context of nonlinear $m$-term approximation in Banach spaces as a generalization of the properties that characterize almost greedy bases, i.e., quasi-greediness and democracy. As a means to compare the efficiency of these new bases with already existing ones in regards to the implementation of the Thresholding Greedy Algorithm, we place emphasis on obtaining estimates for their sequence of unconditionality parameters. Using an enhanced version of the original method from [S. J. Dilworth, N. J. Kalton, and D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67-101] for building almost greedy bases, we manage to construct bidemocratic bases whose unconditionality parameters satisfy significantly worse estimates than almost greedy bases even in Hilbert spaces.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse approximation using new greedy-like bases in superreflexive spaces\",\"authors\":\"F. Albiac, J. L. Ansorena, M. Berasategui\",\"doi\":\"10.4064/sm220506-3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to theoretical aspects on optimality of sparse approximation. We undertake a quantitative study of new types of greedy-like bases that have recently arisen in the context of nonlinear $m$-term approximation in Banach spaces as a generalization of the properties that characterize almost greedy bases, i.e., quasi-greediness and democracy. As a means to compare the efficiency of these new bases with already existing ones in regards to the implementation of the Thresholding Greedy Algorithm, we place emphasis on obtaining estimates for their sequence of unconditionality parameters. Using an enhanced version of the original method from [S. J. Dilworth, N. J. Kalton, and D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67-101] for building almost greedy bases, we manage to construct bidemocratic bases whose unconditionality parameters satisfy significantly worse estimates than almost greedy bases even in Hilbert spaces.\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220506-3-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220506-3-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文致力于稀疏近似最优性的理论方面。我们对最近在Banach空间中非线性$m$-项近似的背景下出现的新型贪婪类基进行了定量研究,作为刻画几乎贪婪基的性质的推广,即拟贪婪和民主。作为在阈值贪婪算法的实现方面将这些新的基础与现有的基础的效率进行比较的一种手段,我们强调获得它们的非条件性参数序列的估计。使用[S.J.Dilworth,N.J.Kalton和D.Kutzarova,关于Banach空间中几乎贪婪基的存在性,Studia Math.159(2003),no.167-101]的原始方法的增强版本来构建几乎贪婪基,我们设法构建了双民主基,其无条件参数甚至在Hilbert空间中满足比几乎贪婪基更差的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse approximation using new greedy-like bases in superreflexive spaces
This paper is devoted to theoretical aspects on optimality of sparse approximation. We undertake a quantitative study of new types of greedy-like bases that have recently arisen in the context of nonlinear $m$-term approximation in Banach spaces as a generalization of the properties that characterize almost greedy bases, i.e., quasi-greediness and democracy. As a means to compare the efficiency of these new bases with already existing ones in regards to the implementation of the Thresholding Greedy Algorithm, we place emphasis on obtaining estimates for their sequence of unconditionality parameters. Using an enhanced version of the original method from [S. J. Dilworth, N. J. Kalton, and D. Kutzarova, On the existence of almost greedy bases in Banach spaces, Studia Math. 159 (2003), no. 1, 67-101] for building almost greedy bases, we manage to construct bidemocratic bases whose unconditionality parameters satisfy significantly worse estimates than almost greedy bases even in Hilbert spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信