{"title":"离散种群模型中收获时机的最优控制","authors":"Skylar Grey, S. Lenhart, F. Hilker, Daniel Franco","doi":"10.1111/nrm.12321","DOIUrl":null,"url":null,"abstract":"Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12321","citationCount":"4","resultStr":"{\"title\":\"Optimal control of harvest timing in discrete population models\",\"authors\":\"Skylar Grey, S. Lenhart, F. Hilker, Daniel Franco\",\"doi\":\"10.1111/nrm.12321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12321\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12321\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12321","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal control of harvest timing in discrete population models
Harvest plays an important role in management decisions, from fisheries to pest control. Discrete‐time models enable us to explore the importance of timing of management decisions, including the order of events of particular actions. We derive novel mechanistic models featuring explicit within‐season harvest timing and level. We explore optimization of within‐season harvest level and timing through optimal control of these population models. With a fixed harvest level, harvest timing is taken as the control. Then both harvest timing and level are used as controls. We maximize an objective functional which includes management goals of maximizing yield, maximizing stock, and minimizing costs associated with both harvest intensity and harvest timing. While standard models with compensatory population dynamics predict it is best to harvest as early as possible in the season, we find instances where harvesting later in the season is optimal. Furthermore, we discover interesting oscillations in the population size, which would be unexpected in the model without time‐varying controls.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.