一类具有库仑势的Hartree方程全局存在的能量准则

IF 0.4 Q4 MATHEMATICS, APPLIED
Na Tang, Jian Zhang
{"title":"一类具有库仑势的Hartree方程全局存在的能量准则","authors":"Na Tang, Jian Zhang","doi":"10.5206/mase/15536","DOIUrl":null,"url":null,"abstract":"This paper studies a class of Hartree equations with Coulomb potential. Combined with the conservation of mass and energy, we analyze the variational characteristics of the corresponding nonlinear elliptic equation. According to the range of parameters, we construct the evolution invariant flows of the equation in different cases. Then the sharp energy thresholds for global existence and blow-up of solutions are discussed in detail.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy criteria of global existence for a class of Hartree equations with Coulomb potential\",\"authors\":\"Na Tang, Jian Zhang\",\"doi\":\"10.5206/mase/15536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a class of Hartree equations with Coulomb potential. Combined with the conservation of mass and energy, we analyze the variational characteristics of the corresponding nonlinear elliptic equation. According to the range of parameters, we construct the evolution invariant flows of the equation in different cases. Then the sharp energy thresholds for global existence and blow-up of solutions are discussed in detail.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/mase/15536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/mase/15536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有库仑势的Hartree方程。结合质量守恒和能量守恒,分析了相应的非线性椭圆型方程的变分特性。根据参数的取值范围,构造了不同情况下方程的演化不变流。然后详细讨论了解的全局存在和爆破的尖锐能量阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy criteria of global existence for a class of Hartree equations with Coulomb potential
This paper studies a class of Hartree equations with Coulomb potential. Combined with the conservation of mass and energy, we analyze the variational characteristics of the corresponding nonlinear elliptic equation. According to the range of parameters, we construct the evolution invariant flows of the equation in different cases. Then the sharp energy thresholds for global existence and blow-up of solutions are discussed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信