{"title":"机器学习:预测边坡不稳定性的新方法","authors":"U. Kothari, M. Momayez","doi":"10.1155/2018/4861254","DOIUrl":null,"url":null,"abstract":"Geomechanical analysis plays a major role in providing a safe working environment in an active mine. Geomechanical analysis includes but is not limited to providing active monitoring of pit walls and predicting slope failures. During the analysis of a slope failure, it is essential to provide a safe prediction, that is, a predicted time of failure prior to the actual failure. Modern-day monitoring technology is a powerful tool used to obtain the time and deformation data used to predict the time of slope failure. This research aims to demonstrate the use of machine learning (ML) to predict the time of slope failures. Twenty-two datasets of past failures collected from radar monitoring systems were utilized in this study. A two-layer feed-forward prediction network was used to make multistep predictions into the future. The results show an 86% improvement in the predicted values compared to the inverse velocity (IV) method. Eighty-two percent of the failure predictions made using ML method fell in the safe zone. While 18% of the predictions were in the unsafe zone, all the unsafe predictions were within five minutes of the actual failure time, all practical purposes making the entire set of predictions safe and reliable.","PeriodicalId":45602,"journal":{"name":"International Journal of Geophysics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/4861254","citationCount":"8","resultStr":"{\"title\":\"Machine Learning: A Novel Approach to Predicting Slope Instabilities\",\"authors\":\"U. Kothari, M. Momayez\",\"doi\":\"10.1155/2018/4861254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geomechanical analysis plays a major role in providing a safe working environment in an active mine. Geomechanical analysis includes but is not limited to providing active monitoring of pit walls and predicting slope failures. During the analysis of a slope failure, it is essential to provide a safe prediction, that is, a predicted time of failure prior to the actual failure. Modern-day monitoring technology is a powerful tool used to obtain the time and deformation data used to predict the time of slope failure. This research aims to demonstrate the use of machine learning (ML) to predict the time of slope failures. Twenty-two datasets of past failures collected from radar monitoring systems were utilized in this study. A two-layer feed-forward prediction network was used to make multistep predictions into the future. The results show an 86% improvement in the predicted values compared to the inverse velocity (IV) method. Eighty-two percent of the failure predictions made using ML method fell in the safe zone. While 18% of the predictions were in the unsafe zone, all the unsafe predictions were within five minutes of the actual failure time, all practical purposes making the entire set of predictions safe and reliable.\",\"PeriodicalId\":45602,\"journal\":{\"name\":\"International Journal of Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/4861254\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/4861254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4861254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Machine Learning: A Novel Approach to Predicting Slope Instabilities
Geomechanical analysis plays a major role in providing a safe working environment in an active mine. Geomechanical analysis includes but is not limited to providing active monitoring of pit walls and predicting slope failures. During the analysis of a slope failure, it is essential to provide a safe prediction, that is, a predicted time of failure prior to the actual failure. Modern-day monitoring technology is a powerful tool used to obtain the time and deformation data used to predict the time of slope failure. This research aims to demonstrate the use of machine learning (ML) to predict the time of slope failures. Twenty-two datasets of past failures collected from radar monitoring systems were utilized in this study. A two-layer feed-forward prediction network was used to make multistep predictions into the future. The results show an 86% improvement in the predicted values compared to the inverse velocity (IV) method. Eighty-two percent of the failure predictions made using ML method fell in the safe zone. While 18% of the predictions were in the unsafe zone, all the unsafe predictions were within five minutes of the actual failure time, all practical purposes making the entire set of predictions safe and reliable.
期刊介绍:
International Journal of Geophysics is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of theoretical, observational, applied, and computational geophysics.