A. Ressler, A. Gudelj, Karla Zadro, M. Antunović, M. Cvetnić, M. Ivanković, H. Ivanković
{"title":"从生物垃圾到骨替代品","authors":"A. Ressler, A. Gudelj, Karla Zadro, M. Antunović, M. Cvetnić, M. Ivanković, H. Ivanković","doi":"10.15255/cabeq.2020.1783","DOIUrl":null,"url":null,"abstract":"Nanocomposite structure of the bone can be mimicked by chitosan/hydroxyapatite (CS/HAp) composite scaffold. Biological hydroxyapatite (HAp) contains various ions, which have a crucial role in bone growth. The aim of the present work was to synthesize biomimetic hydroxyapatite and prepare composite scaffolds based on chitosan, where HAp was synthesised from hen eggshells, seashells and cuttlefish bone. The powders were composed of nano-structured calcium deficient HAp and amorphous calcium phosphate (ACP). In the as-prepared powders, Sr2+, Mg2+ and Na+ ions were detected as a result of using biogenic precursor of Ca2+ ions. Highly porous CS/HAp structures have been prepared by freeze-gelation technique. The CS/HAp scaffolds have shown highly porous structure with very well interconnected pores and homogeneously dispersed HAp particles. The MTT assay of CS/HAp scaffolds has shown no toxicity, and the live/dead assay has confirmed good viability and proliferation of seeded cells.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"59-71"},"PeriodicalIF":1.6000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15255/cabeq.2020.1783","citationCount":"15","resultStr":"{\"title\":\"From Bio-waste to Bone Substitute\",\"authors\":\"A. Ressler, A. Gudelj, Karla Zadro, M. Antunović, M. Cvetnić, M. Ivanković, H. Ivanković\",\"doi\":\"10.15255/cabeq.2020.1783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocomposite structure of the bone can be mimicked by chitosan/hydroxyapatite (CS/HAp) composite scaffold. Biological hydroxyapatite (HAp) contains various ions, which have a crucial role in bone growth. The aim of the present work was to synthesize biomimetic hydroxyapatite and prepare composite scaffolds based on chitosan, where HAp was synthesised from hen eggshells, seashells and cuttlefish bone. The powders were composed of nano-structured calcium deficient HAp and amorphous calcium phosphate (ACP). In the as-prepared powders, Sr2+, Mg2+ and Na+ ions were detected as a result of using biogenic precursor of Ca2+ ions. Highly porous CS/HAp structures have been prepared by freeze-gelation technique. The CS/HAp scaffolds have shown highly porous structure with very well interconnected pores and homogeneously dispersed HAp particles. The MTT assay of CS/HAp scaffolds has shown no toxicity, and the live/dead assay has confirmed good viability and proliferation of seeded cells.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":\"34 1\",\"pages\":\"59-71\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15255/cabeq.2020.1783\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2020.1783\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2020.1783","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Nanocomposite structure of the bone can be mimicked by chitosan/hydroxyapatite (CS/HAp) composite scaffold. Biological hydroxyapatite (HAp) contains various ions, which have a crucial role in bone growth. The aim of the present work was to synthesize biomimetic hydroxyapatite and prepare composite scaffolds based on chitosan, where HAp was synthesised from hen eggshells, seashells and cuttlefish bone. The powders were composed of nano-structured calcium deficient HAp and amorphous calcium phosphate (ACP). In the as-prepared powders, Sr2+, Mg2+ and Na+ ions were detected as a result of using biogenic precursor of Ca2+ ions. Highly porous CS/HAp structures have been prepared by freeze-gelation technique. The CS/HAp scaffolds have shown highly porous structure with very well interconnected pores and homogeneously dispersed HAp particles. The MTT assay of CS/HAp scaffolds has shown no toxicity, and the live/dead assay has confirmed good viability and proliferation of seeded cells.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.