{"title":"对称三对角和五对角矩阵的完全正性","authors":"Lei Cao, Darian Mclaren, S. Plosker","doi":"10.1515/spma-2022-0173","DOIUrl":null,"url":null,"abstract":"Abstract We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any completely positive irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results and providing two different decompositions sufficient for complete positivity. We illustrate our constructions with a number of examples.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complete positivity of symmetric tridiagonal and pentadiagonal matrices\",\"authors\":\"Lei Cao, Darian Mclaren, S. Plosker\",\"doi\":\"10.1515/spma-2022-0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any completely positive irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results and providing two different decompositions sufficient for complete positivity. We illustrate our constructions with a number of examples.\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/spma-2022-0173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The complete positivity of symmetric tridiagonal and pentadiagonal matrices
Abstract We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any completely positive irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results and providing two different decompositions sufficient for complete positivity. We illustrate our constructions with a number of examples.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.