美国科罗拉多州戈尔登肖顺尼桌山ar年代学与岩石成因

Q3 Earth and Planetary Sciences
Alexie E. G. Millikin, L. Morgan, J. Noblett
{"title":"美国科罗拉多州戈尔登肖顺尼桌山ar年代学与岩石成因","authors":"Alexie E. G. Millikin, L. Morgan, J. Noblett","doi":"10.24872/rmgjournal.53.1.1","DOIUrl":null,"url":null,"abstract":"&NA; The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long‐held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major‐ and trace‐ element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K‐Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2&sgr; uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone‐shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental‐arc field in tectonic discrimination diagrams. A continental‐arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high‐K magmatism is associated with Laramide tectonism.","PeriodicalId":34958,"journal":{"name":"Rocky Mountain Geology","volume":"53 1","pages":"1–28"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.\",\"authors\":\"Alexie E. G. Millikin, L. Morgan, J. Noblett\",\"doi\":\"10.24872/rmgjournal.53.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"&NA; The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long‐held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major‐ and trace‐ element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K‐Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2&sgr; uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone‐shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental‐arc field in tectonic discrimination diagrams. A continental‐arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high‐K magmatism is associated with Laramide tectonism.\",\"PeriodicalId\":34958,\"journal\":{\"name\":\"Rocky Mountain Geology\",\"volume\":\"53 1\",\"pages\":\"1–28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24872/rmgjournal.53.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24872/rmgjournal.53.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

患者;上白垩世和下古近纪桌山舒顺岩熔岩流及其来源,拉尔斯顿Buttes侵入,提供了对科罗拉多前山脉火山历史的深入了解。本研究通过主要元素和微量元素地球化学证实了长期以来的假设,即将挤压的桌山熔岩流与Ralston Buttes的侵入性熔岩流联系起来。来自所有流体和侵入单元的系统的40Ar/39Ar地质年代学改进了喷发历史,提高了先前报道年龄的精度,并为该位置的K - Pg边界位置提供了更严格的约束。在科罗拉多州戈尔登市外的北桌山和南桌山有四个水流。流量1(66.5±0.3 Ma,所有年龄报告2&sgr;不确定)是最古老、成分最独特的水流,与较年轻的水流相隔约35米的丹佛组沉积沉积物。地层相邻流2(65.8±0.2 Ma)、3(65.5±0.3 Ma)和4(65.9±0.3 Ma)在成分上难以区分。北桌山顶上的熔岩(这里称为第5单元)形成了三个锥形结构(本研究显示为新的第5单元的火山口),其成分与其他单元相似,但产生的年龄几乎比其他单元小20毫安(46.94±0.15毫安)。地球化学和年代学表明,Ralston塞的边缘相(65.4±0.2 Ma)是流2、流3和流4的合理来源。所有单元都是闪玄武岩——含斜长石、辉长石、橄榄石和磁铁矿的钾质玄武岩,并在构造判别图中绘制在大陆弧场中。大陆弧背景与晚白垩世至早古近纪的年龄相结合,表明高钾岩浆活动与拉腊胺构造活动有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
40Ar/39Ar geochronology and petrogenesis of the Table Mountain Shoshonite, Golden, Colorado, U.S.A.
&NA; The Upper Cretaceous and Lower Paleogene Table Mountain Shoshonite lava flows and their proposed source, the Ralston Buttes intrusions, provide insight into the volcanic history of the Colorado Front Range. This study affirms the long‐held hypothesis linking the extrusive Table Mountain lava flows and their intrusive equivalents at Ralston Buttes through major‐ and trace‐ element geochemistry. Systematic 40Ar/39Ar geochronology from all flows and intrusive units refines the eruptive history, improves precision on previously reported ages, and provides tighter constraints on the position of the K‐Pg boundary in this location. Four flows are recognized on North and South Table mountains outside of Golden, Colorado. Flow 1 (66.5 ± 0.3 Ma, all ages reported with 2&sgr; uncertainty) is the oldest, most compositionally distinct flow and is separated from younger flows by approximately 35 m of sedimentary deposits of the Denver Formation. Stratigraphically adjacent flows 2 (65.8 ± 0.2 Ma), 3 (65.5 ± 0.3 Ma), and 4 (65.9 ± 0.3 Ma) are compositionally indistinguishable. Lavas (referred to here as unit 5) that form three cone‐shaped structures (shown by this study to be volcanic vents of a new unit 5) on top of North Table Mountain are compositionally similar to other units, but yield an age almost 20 m.y. younger (46.94 ± 0.15 Ma). Geochemistry and geochronology suggest that the rim phase of the Ralston plug (65.4 ± 0.2 Ma) is a reasonable source for flows 2, 3, and 4. All units are shoshonites—potassic basalts containing plagioclase, augite, olivine, and magnetite phenocrysts—and plot in the continental‐arc field in tectonic discrimination diagrams. A continental‐arc setting coupled with Late Cretaceous to early Paleogene ages suggest the high‐K magmatism is associated with Laramide tectonism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rocky Mountain Geology
Rocky Mountain Geology Earth and Planetary Sciences-Geology
CiteScore
1.10
自引率
0.00%
发文量
4
期刊介绍: Rocky Mountain Geology (formerly Contributions to Geology) is published twice yearly by the Department of Geology and Geophysics at the University of Wyoming. The focus of the journal is regional geology and paleontology of the Rocky Mountains and adjacent areas of western North America. This high-impact, scholarly journal, is an important resource for professional earth scientists. The high-quality, refereed articles report original research by top specialists in all aspects of geology and paleontology in the greater Rocky Mountain region.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信