{"title":"logistic脉冲微分方程的正分段连续拟周期解","authors":"Liangping Qi, Guowei Zong","doi":"10.1080/08898480.2022.2043067","DOIUrl":null,"url":null,"abstract":"ABSTRACT To prove the existence of piecewise continuous solutions to a logistic quasi-periodic differential system with impulses (whose coefficients have rationally independent periods), this system is divided into a differential equation and a difference equation. The quasi-periodicity of a function is proved by showing that this function is the uniform limit of a series of trigonometric polynomials with a finite total number of frequencies. The asymptotically stable quasi-periodic positive and piecewise continuous solution is proved to exist and to be unique. Quasi-periodic variation of the environment leads to a quasi-periodic growth of the population size in the sense that the rationally independent frequencies of the system are also frequencies of the quasi-periodic solution. The positive solutions have a repeated behavior similar to that of the quasi-periodic solution for a sufficiently long time due to asymptotical stability. The separation of the continuous-discrete system into a differential equation and a difference equation is a method of proving the existence of a quasi-periodic solution with perturbed coefficients of the impulsive system.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"30 1","pages":"95 - 121"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive piecewise continuous quasi-periodic solutions to logistic impulsive differential equations\",\"authors\":\"Liangping Qi, Guowei Zong\",\"doi\":\"10.1080/08898480.2022.2043067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To prove the existence of piecewise continuous solutions to a logistic quasi-periodic differential system with impulses (whose coefficients have rationally independent periods), this system is divided into a differential equation and a difference equation. The quasi-periodicity of a function is proved by showing that this function is the uniform limit of a series of trigonometric polynomials with a finite total number of frequencies. The asymptotically stable quasi-periodic positive and piecewise continuous solution is proved to exist and to be unique. Quasi-periodic variation of the environment leads to a quasi-periodic growth of the population size in the sense that the rationally independent frequencies of the system are also frequencies of the quasi-periodic solution. The positive solutions have a repeated behavior similar to that of the quasi-periodic solution for a sufficiently long time due to asymptotical stability. The separation of the continuous-discrete system into a differential equation and a difference equation is a method of proving the existence of a quasi-periodic solution with perturbed coefficients of the impulsive system.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"30 1\",\"pages\":\"95 - 121\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2022.2043067\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2022.2043067","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
Positive piecewise continuous quasi-periodic solutions to logistic impulsive differential equations
ABSTRACT To prove the existence of piecewise continuous solutions to a logistic quasi-periodic differential system with impulses (whose coefficients have rationally independent periods), this system is divided into a differential equation and a difference equation. The quasi-periodicity of a function is proved by showing that this function is the uniform limit of a series of trigonometric polynomials with a finite total number of frequencies. The asymptotically stable quasi-periodic positive and piecewise continuous solution is proved to exist and to be unique. Quasi-periodic variation of the environment leads to a quasi-periodic growth of the population size in the sense that the rationally independent frequencies of the system are also frequencies of the quasi-periodic solution. The positive solutions have a repeated behavior similar to that of the quasi-periodic solution for a sufficiently long time due to asymptotical stability. The separation of the continuous-discrete system into a differential equation and a difference equation is a method of proving the existence of a quasi-periodic solution with perturbed coefficients of the impulsive system.
期刊介绍:
Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions.
The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.