对农场规模的干草、草或豆科植物和玉米青贮的微生物生态学的元分类学见解,有和没有接种剂

Alexandre J. Kennang Ouamba, Mérilie Gagnon, Thibault V. Varin, P. Chouinard, G. LaPointe, Denis Roy
{"title":"对农场规模的干草、草或豆科植物和玉米青贮的微生物生态学的元分类学见解,有和没有接种剂","authors":"Alexandre J. Kennang Ouamba, Mérilie Gagnon, Thibault V. Varin, P. Chouinard, G. LaPointe, Denis Roy","doi":"10.3389/fsysb.2022.955611","DOIUrl":null,"url":null,"abstract":"The microbiota of silage is a key determinant of its quality. Although commercial inoculants are often used to improve silage quality, studies to analyze their impact on the microbiota of preserved forage at farm-scale facilities are scarce. We assessed the diversity of viable bacterial communities of hay (unfermented dry forage) and grass or legume (GL) and corn (C) silage to deepen our knowledge of how inoculant addition drives microbial occurrence patterns on dairy farms. Forage samples were collected from 24 dairy farms over two sampling periods. Samples were analyzed by high-throughput sequencing and quantitative PCR after being treated with propidium monoazide to account for viable cells. We found consistent significant differences between hay and silage community structures across sampling periods. Silage was generally dominated by lactic acid bacteria (LAB), while Pantoea and Sphingomonas were the main co-dominant genera in hay. The GL silage dominated by Pediococcus, Weissella, and Bacillus was phylogenetically different from C silage enriched in Acetobacter. The use of inoculants including Lentilactobacillus buchneri either alone or in combination with Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus pentosaceus, or Enterococcus faecium did not systematically prevent the occurrence of undesirable bacteria, especially when corn-based, probably because of factors that can mitigate the effect of inoculation on the microbiota. The core Lactobacillales constituted the dominant LAB in silage with up to 96% relative abundance, indicating either the ubiquity of inoculants or the high competitiveness of epiphytes. Silage chemical profiles varied inconsistently with sampling periods and the use of inoculants. Multivariate multi-table analyses allowed the identification of bacterial clusters mainly driven by moisture and magnesium content in hay, while pH, lactic, and fatty acids were the main drivers for silage. Bacterial network analyses showed considerable variations in the topological roles with the use of inoculants. These results may help evaluate the effectiveness of forage management practices implemented on dairy farms and, therefore, are useful for fine-tuning the search for new additives. Such knowledge can be used by forage makers to adjust processing routines to improve the hygienic quality, nutritional potential, and aerobic stability of preserved forage.","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Metataxonomic insights into the microbial ecology of farm-scale hay, grass or legume, and corn silage produced with and without inoculants\",\"authors\":\"Alexandre J. Kennang Ouamba, Mérilie Gagnon, Thibault V. Varin, P. Chouinard, G. LaPointe, Denis Roy\",\"doi\":\"10.3389/fsysb.2022.955611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microbiota of silage is a key determinant of its quality. Although commercial inoculants are often used to improve silage quality, studies to analyze their impact on the microbiota of preserved forage at farm-scale facilities are scarce. We assessed the diversity of viable bacterial communities of hay (unfermented dry forage) and grass or legume (GL) and corn (C) silage to deepen our knowledge of how inoculant addition drives microbial occurrence patterns on dairy farms. Forage samples were collected from 24 dairy farms over two sampling periods. Samples were analyzed by high-throughput sequencing and quantitative PCR after being treated with propidium monoazide to account for viable cells. We found consistent significant differences between hay and silage community structures across sampling periods. Silage was generally dominated by lactic acid bacteria (LAB), while Pantoea and Sphingomonas were the main co-dominant genera in hay. The GL silage dominated by Pediococcus, Weissella, and Bacillus was phylogenetically different from C silage enriched in Acetobacter. The use of inoculants including Lentilactobacillus buchneri either alone or in combination with Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus pentosaceus, or Enterococcus faecium did not systematically prevent the occurrence of undesirable bacteria, especially when corn-based, probably because of factors that can mitigate the effect of inoculation on the microbiota. The core Lactobacillales constituted the dominant LAB in silage with up to 96% relative abundance, indicating either the ubiquity of inoculants or the high competitiveness of epiphytes. Silage chemical profiles varied inconsistently with sampling periods and the use of inoculants. Multivariate multi-table analyses allowed the identification of bacterial clusters mainly driven by moisture and magnesium content in hay, while pH, lactic, and fatty acids were the main drivers for silage. Bacterial network analyses showed considerable variations in the topological roles with the use of inoculants. These results may help evaluate the effectiveness of forage management practices implemented on dairy farms and, therefore, are useful for fine-tuning the search for new additives. Such knowledge can be used by forage makers to adjust processing routines to improve the hygienic quality, nutritional potential, and aerobic stability of preserved forage.\",\"PeriodicalId\":73109,\"journal\":{\"name\":\"Frontiers in systems biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsysb.2022.955611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2022.955611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

青贮饲料的微生物群是决定青贮饲料品质的关键因素。虽然商业接种剂经常用于提高青贮质量,但在农场规模设施中分析其对保存饲料微生物群影响的研究很少。我们评估了干草(未发酵的干饲料)和草或豆类(GL)和玉米(C)青贮的活菌群落的多样性,以加深我们对接种剂添加如何驱动奶牛农场微生物发生模式的了解。饲料样本在两个采样期内从24个奶牛场采集。样品经单叠氮丙啶处理后,通过高通量测序和定量PCR分析活细胞。我们发现干草和青贮的群落结构在采样期间存在一致的显著差异。青贮以乳酸菌为主,泛菌属和鞘氨单胞菌属为主要共优势菌属。以Pediococcus、Weissella和Bacillus为主的GL青贮与以Acetobacter为主的C青贮在系统发育上存在差异。包括布氏小乳杆菌在内的接种剂的单独使用或与植物乳杆菌、干酪乳杆菌、薄荷球菌或屎肠球菌联合使用并不能系统地防止不良细菌的发生,特别是当以玉米为基础时,可能是因为有一些因素可以减轻接种对微生物群的影响。核心乳酸菌构成青贮菌群的优势菌群,相对丰度高达96%,说明接种剂普遍存在或附生菌具有很强的竞争力。青贮化学特征随采样周期和接种剂的使用而变化不一致。多变量多表分析表明,细菌群主要受干草中水分和镁含量的影响,而pH、乳酸和脂肪酸是青贮的主要驱动因素。细菌网络分析显示,随着接种剂的使用,拓扑作用发生了相当大的变化。这些结果可能有助于评估在奶牛场实施的饲料管理实践的有效性,因此,对微调寻找新的添加剂是有用的。这些知识可以被饲料制造商用来调整加工程序,以提高保存饲料的卫生质量、营养潜力和有氧稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metataxonomic insights into the microbial ecology of farm-scale hay, grass or legume, and corn silage produced with and without inoculants
The microbiota of silage is a key determinant of its quality. Although commercial inoculants are often used to improve silage quality, studies to analyze their impact on the microbiota of preserved forage at farm-scale facilities are scarce. We assessed the diversity of viable bacterial communities of hay (unfermented dry forage) and grass or legume (GL) and corn (C) silage to deepen our knowledge of how inoculant addition drives microbial occurrence patterns on dairy farms. Forage samples were collected from 24 dairy farms over two sampling periods. Samples were analyzed by high-throughput sequencing and quantitative PCR after being treated with propidium monoazide to account for viable cells. We found consistent significant differences between hay and silage community structures across sampling periods. Silage was generally dominated by lactic acid bacteria (LAB), while Pantoea and Sphingomonas were the main co-dominant genera in hay. The GL silage dominated by Pediococcus, Weissella, and Bacillus was phylogenetically different from C silage enriched in Acetobacter. The use of inoculants including Lentilactobacillus buchneri either alone or in combination with Lactiplantibacillus plantarum, Lacticaseibacillus casei, Pediococcus pentosaceus, or Enterococcus faecium did not systematically prevent the occurrence of undesirable bacteria, especially when corn-based, probably because of factors that can mitigate the effect of inoculation on the microbiota. The core Lactobacillales constituted the dominant LAB in silage with up to 96% relative abundance, indicating either the ubiquity of inoculants or the high competitiveness of epiphytes. Silage chemical profiles varied inconsistently with sampling periods and the use of inoculants. Multivariate multi-table analyses allowed the identification of bacterial clusters mainly driven by moisture and magnesium content in hay, while pH, lactic, and fatty acids were the main drivers for silage. Bacterial network analyses showed considerable variations in the topological roles with the use of inoculants. These results may help evaluate the effectiveness of forage management practices implemented on dairy farms and, therefore, are useful for fine-tuning the search for new additives. Such knowledge can be used by forage makers to adjust processing routines to improve the hygienic quality, nutritional potential, and aerobic stability of preserved forage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信