Tianqiang Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec
{"title":"容许移动海底基础的离心试验:探索土壤类型对全寿命阻力和沉降演变的影响","authors":"Tianqiang Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec","doi":"10.1680/jphmg.22.00017","DOIUrl":null,"url":null,"abstract":"Tolerably mobile subsea foundations may be used to replace conventional fixed mudmat foundations for pipeline infrastructure and are designed to slide on the seabed along with the connected pipeline, in order to accommodate thermally induced horizontal forces. This allows the size of the foundation and the resulting fabrication and installation costs to be substantially reduced. The performance of mobile foundations is explored in this paper through four centrifuge model tests on a NC or LOC reconstituted calcareous silt obtained from the Northwest Shelf of Western Australia. The results are compared to three existing tests performed on a kaolin clay. The results show that under typical periodic surface sliding and intervening rests, sliding resistance evolves within a cycle with resistance peaks evident at either end of the sliding footprint due to the formation of berms, and the residual resistance increasing with sliding cycles towards a drained state. Shear and consolidation induced settlements accumulate with sliding cycles although at a reducing rate. The tests in the calcareous silt show higher normalised initial peak sliding resistance, a more dramatic loss and slower recovery of sliding resistance with cycles, and slower rate of decrease of incremental settlement compared with the response in kaolin clay.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Centrifuge testing of a tolerably mobile subsea foundation: exploring the effect of soil type on the evolution of whole-life resistance and settlement\",\"authors\":\"Tianqiang Jia, S. Stanier, P. Watson, Xiaowei Feng, S. Gourvenec\",\"doi\":\"10.1680/jphmg.22.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tolerably mobile subsea foundations may be used to replace conventional fixed mudmat foundations for pipeline infrastructure and are designed to slide on the seabed along with the connected pipeline, in order to accommodate thermally induced horizontal forces. This allows the size of the foundation and the resulting fabrication and installation costs to be substantially reduced. The performance of mobile foundations is explored in this paper through four centrifuge model tests on a NC or LOC reconstituted calcareous silt obtained from the Northwest Shelf of Western Australia. The results are compared to three existing tests performed on a kaolin clay. The results show that under typical periodic surface sliding and intervening rests, sliding resistance evolves within a cycle with resistance peaks evident at either end of the sliding footprint due to the formation of berms, and the residual resistance increasing with sliding cycles towards a drained state. Shear and consolidation induced settlements accumulate with sliding cycles although at a reducing rate. The tests in the calcareous silt show higher normalised initial peak sliding resistance, a more dramatic loss and slower recovery of sliding resistance with cycles, and slower rate of decrease of incremental settlement compared with the response in kaolin clay.\",\"PeriodicalId\":48816,\"journal\":{\"name\":\"International Journal of Physical Modelling in Geotechnics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Modelling in Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jphmg.22.00017\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jphmg.22.00017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Centrifuge testing of a tolerably mobile subsea foundation: exploring the effect of soil type on the evolution of whole-life resistance and settlement
Tolerably mobile subsea foundations may be used to replace conventional fixed mudmat foundations for pipeline infrastructure and are designed to slide on the seabed along with the connected pipeline, in order to accommodate thermally induced horizontal forces. This allows the size of the foundation and the resulting fabrication and installation costs to be substantially reduced. The performance of mobile foundations is explored in this paper through four centrifuge model tests on a NC or LOC reconstituted calcareous silt obtained from the Northwest Shelf of Western Australia. The results are compared to three existing tests performed on a kaolin clay. The results show that under typical periodic surface sliding and intervening rests, sliding resistance evolves within a cycle with resistance peaks evident at either end of the sliding footprint due to the formation of berms, and the residual resistance increasing with sliding cycles towards a drained state. Shear and consolidation induced settlements accumulate with sliding cycles although at a reducing rate. The tests in the calcareous silt show higher normalised initial peak sliding resistance, a more dramatic loss and slower recovery of sliding resistance with cycles, and slower rate of decrease of incremental settlement compared with the response in kaolin clay.
期刊介绍:
International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.