瓦尔德豪森可加性:经典和准范畴

IF 0.5 4区 数学
Thomas M. Fiore, Malte Pieper
{"title":"瓦尔德豪森可加性:经典和准范畴","authors":"Thomas M. Fiore,&nbsp;Malte Pieper","doi":"10.1007/s40062-018-0206-6","DOIUrl":null,"url":null,"abstract":"<p>We use a simplicial product version of Quillen’s Theorem A to prove classical Waldhausen Additivity of <span>\\(wS_\\bullet \\)</span>, which says that the “subobject” and “quotient” functors of cofiber sequences induce a weak equivalence <span>\\(wS_\\bullet {\\mathcal {E}}({\\mathcal {A}},{\\mathcal {C}},{\\mathcal {B}}) \\rightarrow wS_\\bullet {\\mathcal {A}}\\times wS_\\bullet {\\mathcal {B}}\\)</span>. A consequence is Additivity for the Waldhausen <i>K</i>-theory spectrum of the associated split exact sequence, namely a stable equivalence of spectra <span>\\({\\mathbf {K}}({\\mathcal {A}}) \\vee {\\mathbf {K}}({\\mathcal {B}}) \\rightarrow {\\mathbf {K}}({\\mathcal {E}}({\\mathcal {A}},{\\mathcal {C}},{\\mathcal {B}}))\\)</span>. This paper is dedicated to transferring these proofs to the quasicategorical setting and developing Waldhausen quasicategories and their sequences. We also give sufficient conditions for a split exact sequence to be equivalent to a standard one. These conditions are always satisfied by stable quasicategories, so Waldhausen <i>K</i>-theory sends any split exact sequence of pointed stable quasicategories to a split cofiber sequence. Presentability is not needed. In an effort to make the article self-contained, we recall all the necessary results from the theory of quasicategories, and prove a few quasicategorical results that are not in the literature.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"14 1","pages":"109 - 197"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-018-0206-6","citationCount":"6","resultStr":"{\"title\":\"Waldhausen Additivity: classical and quasicategorical\",\"authors\":\"Thomas M. Fiore,&nbsp;Malte Pieper\",\"doi\":\"10.1007/s40062-018-0206-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use a simplicial product version of Quillen’s Theorem A to prove classical Waldhausen Additivity of <span>\\\\(wS_\\\\bullet \\\\)</span>, which says that the “subobject” and “quotient” functors of cofiber sequences induce a weak equivalence <span>\\\\(wS_\\\\bullet {\\\\mathcal {E}}({\\\\mathcal {A}},{\\\\mathcal {C}},{\\\\mathcal {B}}) \\\\rightarrow wS_\\\\bullet {\\\\mathcal {A}}\\\\times wS_\\\\bullet {\\\\mathcal {B}}\\\\)</span>. A consequence is Additivity for the Waldhausen <i>K</i>-theory spectrum of the associated split exact sequence, namely a stable equivalence of spectra <span>\\\\({\\\\mathbf {K}}({\\\\mathcal {A}}) \\\\vee {\\\\mathbf {K}}({\\\\mathcal {B}}) \\\\rightarrow {\\\\mathbf {K}}({\\\\mathcal {E}}({\\\\mathcal {A}},{\\\\mathcal {C}},{\\\\mathcal {B}}))\\\\)</span>. This paper is dedicated to transferring these proofs to the quasicategorical setting and developing Waldhausen quasicategories and their sequences. We also give sufficient conditions for a split exact sequence to be equivalent to a standard one. These conditions are always satisfied by stable quasicategories, so Waldhausen <i>K</i>-theory sends any split exact sequence of pointed stable quasicategories to a split cofiber sequence. Presentability is not needed. In an effort to make the article self-contained, we recall all the necessary results from the theory of quasicategories, and prove a few quasicategorical results that are not in the literature.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"14 1\",\"pages\":\"109 - 197\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-018-0206-6\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-018-0206-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-018-0206-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们利用Quillen定理a的一个简化乘积版本证明了\(wS_\bullet \)的经典Waldhausen可加性,证明了共纤维序列的“子对象”和“商”函子存在弱等价\(wS_\bullet {\mathcal {E}}({\mathcal {A}},{\mathcal {C}},{\mathcal {B}}) \rightarrow wS_\bullet {\mathcal {A}}\times wS_\bullet {\mathcal {B}}\)。一个结果是相关分裂精确序列的Waldhausen k理论谱的可加性,即谱的稳定等价\({\mathbf {K}}({\mathcal {A}}) \vee {\mathbf {K}}({\mathcal {B}}) \rightarrow {\mathbf {K}}({\mathcal {E}}({\mathcal {A}},{\mathcal {C}},{\mathcal {B}}))\)。本文致力于将这些证明转移到拟范畴的设定中,发展瓦尔德豪森拟范畴及其序列。我们还给出了分裂精确序列等价于标准序列的充分条件。这些条件总是被稳定的拟范畴所满足,因此Waldhausen k理论将任意点稳定拟范畴的分裂精确序列都归为一个分裂共纤序列。不需要外表。为了使文章自成一体,我们回顾了准范畴理论的所有必要结果,并证明了一些文献中没有的准范畴结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Waldhausen Additivity: classical and quasicategorical

We use a simplicial product version of Quillen’s Theorem A to prove classical Waldhausen Additivity of \(wS_\bullet \), which says that the “subobject” and “quotient” functors of cofiber sequences induce a weak equivalence \(wS_\bullet {\mathcal {E}}({\mathcal {A}},{\mathcal {C}},{\mathcal {B}}) \rightarrow wS_\bullet {\mathcal {A}}\times wS_\bullet {\mathcal {B}}\). A consequence is Additivity for the Waldhausen K-theory spectrum of the associated split exact sequence, namely a stable equivalence of spectra \({\mathbf {K}}({\mathcal {A}}) \vee {\mathbf {K}}({\mathcal {B}}) \rightarrow {\mathbf {K}}({\mathcal {E}}({\mathcal {A}},{\mathcal {C}},{\mathcal {B}}))\). This paper is dedicated to transferring these proofs to the quasicategorical setting and developing Waldhausen quasicategories and their sequences. We also give sufficient conditions for a split exact sequence to be equivalent to a standard one. These conditions are always satisfied by stable quasicategories, so Waldhausen K-theory sends any split exact sequence of pointed stable quasicategories to a split cofiber sequence. Presentability is not needed. In an effort to make the article self-contained, we recall all the necessary results from the theory of quasicategories, and prove a few quasicategorical results that are not in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信