具有时型边界的全局双曲流形上friedrich系统的Cauchy问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
N. Ginoux, S. Murro
{"title":"具有时型边界的全局双曲流形上friedrich系统的Cauchy问题","authors":"N. Ginoux, S. Murro","doi":"10.57262/ade027-0708-497","DOIUrl":null,"url":null,"abstract":"In this paper, the Cauchy problem for a Friedrichs system on a globally hyperbolic manifold with a timelike boundary is investigated. By imposing admissible boundary conditions, the existence and the uniqueness of strong solutions are shown. Furthermore, if the Friedrichs system is hyperbolic, the Cauchy problem is proved to be well-posed in the sense of Hadamard. Finally, examples of Friedrichs systems with admissible boundary conditions are provided. Keywords: symmetric hyperbolic systems, symmetric positive systems, admissible boundary conditions, Dirac operator, normally hyperbolic operator, Klein-Gordon operator, heat operator, reaction-diffusion operator, globally hyperbolic manifolds with timelike boundary.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"On the Cauchy problem for Friedrichs systems on globally hyperbolic manifolds with timelike boundary\",\"authors\":\"N. Ginoux, S. Murro\",\"doi\":\"10.57262/ade027-0708-497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Cauchy problem for a Friedrichs system on a globally hyperbolic manifold with a timelike boundary is investigated. By imposing admissible boundary conditions, the existence and the uniqueness of strong solutions are shown. Furthermore, if the Friedrichs system is hyperbolic, the Cauchy problem is proved to be well-posed in the sense of Hadamard. Finally, examples of Friedrichs systems with admissible boundary conditions are provided. Keywords: symmetric hyperbolic systems, symmetric positive systems, admissible boundary conditions, Dirac operator, normally hyperbolic operator, Klein-Gordon operator, heat operator, reaction-diffusion operator, globally hyperbolic manifolds with timelike boundary.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-0708-497\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-0708-497","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

研究了一类具有类时边界的全局双曲流形上的friedrich系统的Cauchy问题。通过施加容许边界条件,证明了强解的存在性和唯一性。进一步证明了如果Friedrichs系统是双曲的,柯西问题在Hadamard意义上是适定的。最后给出了具有容许边界条件的Friedrichs系统的实例。关键词:对称双曲系统,对称正系统,可容许边界条件,Dirac算子,通常双曲算子,Klein-Gordon算子,热算子,反应扩散算子,具有时间边界的全局双曲流形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Cauchy problem for Friedrichs systems on globally hyperbolic manifolds with timelike boundary
In this paper, the Cauchy problem for a Friedrichs system on a globally hyperbolic manifold with a timelike boundary is investigated. By imposing admissible boundary conditions, the existence and the uniqueness of strong solutions are shown. Furthermore, if the Friedrichs system is hyperbolic, the Cauchy problem is proved to be well-posed in the sense of Hadamard. Finally, examples of Friedrichs systems with admissible boundary conditions are provided. Keywords: symmetric hyperbolic systems, symmetric positive systems, admissible boundary conditions, Dirac operator, normally hyperbolic operator, Klein-Gordon operator, heat operator, reaction-diffusion operator, globally hyperbolic manifolds with timelike boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信