曲线上Higgs丛模的Picard群和基群

IF 0.5 Q3 MATHEMATICS
S. Chakraborty, Arjun Paul
{"title":"曲线上Higgs丛模的Picard群和基群","authors":"S. Chakraborty, Arjun Paul","doi":"10.1515/coma-2018-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"5 1","pages":"146 - 149"},"PeriodicalIF":0.5000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2018-0009","citationCount":"3","resultStr":"{\"title\":\"Picard Group and Fundamental Group of the Moduli of Higgs Bundles on Curves\",\"authors\":\"S. Chakraborty, Arjun Paul\",\"doi\":\"10.1515/coma-2018-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"5 1\",\"pages\":\"146 - 149\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2018-0009\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2018-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2018-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要设X为一条不可约的光滑投影曲线,且g属≥2。设MG, higgs δ是一个连通的约化仿射代数群。设Higgs为拓扑型δ∈π (G)的X上的半稳定主G-Higgs束的模空间。的基本群和Picard群的计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Picard Group and Fundamental Group of the Moduli of Higgs Bundles on Curves
Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信