{"title":"第$p$th个分圆域内的相对类数","authors":"H. Ichimura","doi":"10.18910/77238","DOIUrl":null,"url":null,"abstract":"For a prime number p ≡ 3 mod 4, we write p = 2 n (cid:2) f + 1 for some power (cid:2) f of an odd prime number (cid:2) and an odd integer n with (cid:2) (cid:2) n . For 0 ≤ t ≤ f , let K t be the imaginary subfield of Q ( ζ p ) of degree 2 (cid:2) t and let h − t be the relative class number of K t . We show that for n = 1 (resp. n ≥ 3), a prime number r does not divide the ratio h − t / h − t − 1 when r is a primitive root modulo (cid:2) 2 and r ≥ (cid:2) f − t − 1 (resp. r ≥ ( n − 2) (cid:2) f − t + 1). In particular, for n = 1 or 3, the ratio h − f / h − f − 1 at the top is not divisible by r whenever r is a primitive root modulo (cid:2) 2 . Further, we show that the (cid:2) -part of h − t / h − t − 1 stabilizes for “large” t under some assumption.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relative class numbers inside the $p$th cyclotomic field\",\"authors\":\"H. Ichimura\",\"doi\":\"10.18910/77238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a prime number p ≡ 3 mod 4, we write p = 2 n (cid:2) f + 1 for some power (cid:2) f of an odd prime number (cid:2) and an odd integer n with (cid:2) (cid:2) n . For 0 ≤ t ≤ f , let K t be the imaginary subfield of Q ( ζ p ) of degree 2 (cid:2) t and let h − t be the relative class number of K t . We show that for n = 1 (resp. n ≥ 3), a prime number r does not divide the ratio h − t / h − t − 1 when r is a primitive root modulo (cid:2) 2 and r ≥ (cid:2) f − t − 1 (resp. r ≥ ( n − 2) (cid:2) f − t + 1). In particular, for n = 1 or 3, the ratio h − f / h − f − 1 at the top is not divisible by r whenever r is a primitive root modulo (cid:2) 2 . Further, we show that the (cid:2) -part of h − t / h − t − 1 stabilizes for “large” t under some assumption.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/77238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/77238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
对于素数p lect 3 mod 4,我们为奇数素数(cid:2)和奇数整数n的某个幂(cid:2)f写p=2n(cid:2)f+1。对于0≤t≤f,设KT为2(cid:2)t阶Q(ζp)的虚子域,设h−t为KT的相对类数。我们证明,对于n=1(分别为n≥3),当r是基根模(cid:2)2且r≥(cid:2)f−t−1时,素数r不除以比率h−t/h−t−1。特别是,对于n=1或3,当r是模(cid:2)2的原始根时,顶部的比率h−f/h−f−1不可被r整除。此外,我们证明了在某种假设下,h−t/h−t−1的(cid:2)-部分对“大”t稳定。
Relative class numbers inside the $p$th cyclotomic field
For a prime number p ≡ 3 mod 4, we write p = 2 n (cid:2) f + 1 for some power (cid:2) f of an odd prime number (cid:2) and an odd integer n with (cid:2) (cid:2) n . For 0 ≤ t ≤ f , let K t be the imaginary subfield of Q ( ζ p ) of degree 2 (cid:2) t and let h − t be the relative class number of K t . We show that for n = 1 (resp. n ≥ 3), a prime number r does not divide the ratio h − t / h − t − 1 when r is a primitive root modulo (cid:2) 2 and r ≥ (cid:2) f − t − 1 (resp. r ≥ ( n − 2) (cid:2) f − t + 1). In particular, for n = 1 or 3, the ratio h − f / h − f − 1 at the top is not divisible by r whenever r is a primitive root modulo (cid:2) 2 . Further, we show that the (cid:2) -part of h − t / h − t − 1 stabilizes for “large” t under some assumption.