对成分数量有先验的混合模型的一致性

IF 0.6 Q4 STATISTICS & PROBABILITY
Jeffrey W. Miller
{"title":"对成分数量有先验的混合模型的一致性","authors":"Jeffrey W. Miller","doi":"10.1515/demo-2022-0150","DOIUrl":null,"url":null,"abstract":"Abstract This article establishes general conditions for posterior consistency of Bayesian finite mixture models with a prior on the number of components. That is, we provide sufficient conditions under which the posterior concentrates on neighborhoods of the true parameter values when the data are generated from a finite mixture over the assumed family of component distributions. Specifically, we establish almost sure consistency for the number of components, the mixture weights, and the component parameters, up to a permutation of the component labels. The approach taken here is based on Doob’s theorem, which has the advantage of holding under extraordinarily general conditions, and the disadvantage of only guaranteeing consistency at a set of parameter values that has probability one under the prior. However, we show that in fact, for commonly used choices of prior, this yields consistency at Lebesgue-almost all parameter values, which is satisfactory for most practical purposes. We aim to formulate the results in a way that maximizes clarity, generality, and ease of use.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"116","resultStr":"{\"title\":\"Consistency of mixture models with a prior on the number of components\",\"authors\":\"Jeffrey W. Miller\",\"doi\":\"10.1515/demo-2022-0150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article establishes general conditions for posterior consistency of Bayesian finite mixture models with a prior on the number of components. That is, we provide sufficient conditions under which the posterior concentrates on neighborhoods of the true parameter values when the data are generated from a finite mixture over the assumed family of component distributions. Specifically, we establish almost sure consistency for the number of components, the mixture weights, and the component parameters, up to a permutation of the component labels. The approach taken here is based on Doob’s theorem, which has the advantage of holding under extraordinarily general conditions, and the disadvantage of only guaranteeing consistency at a set of parameter values that has probability one under the prior. However, we show that in fact, for commonly used choices of prior, this yields consistency at Lebesgue-almost all parameter values, which is satisfactory for most practical purposes. We aim to formulate the results in a way that maximizes clarity, generality, and ease of use.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"116\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2022-0150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2022-0150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 116

摘要

摘要本文建立了对成分个数有先验的贝叶斯有限混合模型后验一致性的一般条件。也就是说,我们提供了足够的条件,在这些条件下,当数据是由假设的成分分布族上的有限混合生成时,后验集中在真实参数值的邻域上。具体地说,我们建立了几乎确定的组件数量、混合权重和组件参数的一致性,直到组件标签的排列。这里采用的方法基于Doob定理,它的优点是在非常一般的条件下成立,缺点是只保证在先验条件下概率为1的一组参数值的一致性。然而,我们表明,事实上,对于常用的先验选择,这在lebesgue -几乎所有参数值上产生一致性,这对于大多数实际目的是令人满意的。我们的目标是以一种最大化清晰、通用性和易用性的方式来制定结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistency of mixture models with a prior on the number of components
Abstract This article establishes general conditions for posterior consistency of Bayesian finite mixture models with a prior on the number of components. That is, we provide sufficient conditions under which the posterior concentrates on neighborhoods of the true parameter values when the data are generated from a finite mixture over the assumed family of component distributions. Specifically, we establish almost sure consistency for the number of components, the mixture weights, and the component parameters, up to a permutation of the component labels. The approach taken here is based on Doob’s theorem, which has the advantage of holding under extraordinarily general conditions, and the disadvantage of only guaranteeing consistency at a set of parameter values that has probability one under the prior. However, we show that in fact, for commonly used choices of prior, this yields consistency at Lebesgue-almost all parameter values, which is satisfactory for most practical purposes. We aim to formulate the results in a way that maximizes clarity, generality, and ease of use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信