基于分形理论和多场效应的页岩气微观结构特征及渗透率评价

IF 3.3 3区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dayu Ye, Guannan Liu, Bo-ming Yu, Xutong Zhang, Feng Gao
{"title":"基于分形理论和多场效应的页岩气微观结构特征及渗透率评价","authors":"Dayu Ye, Guannan Liu, Bo-ming Yu, Xutong Zhang, Feng Gao","doi":"10.1142/s0218348x23500792","DOIUrl":null,"url":null,"abstract":"The key to shale gas exploration is the characterization of gas migration under the combination of multiple factors. To address the long-standing energy challenge of rapidly and accurately quantifying the behavior of natural fractures and matrix pores in shale at an engineering scale in interaction with gas migration. This study proposes an interdisciplinary model for shale gas extraction by adopting fractal theory. Five innovative microstructural parameters are developed to characterize the size and scale of natural matrix pores/fractures in shale, so as to investigate the contributions of fractal distributed pores and fractal power-law distributed fractures to shale gas extraction. The present results of the proposed model are consistent with the exploitation state of the UK Bowland Shale #114 well. The evolution of the shale microstructure will lead to changes in gas migration behavior throughout the reservoir and in turn affect shale stress, temperature and gas adsorption–desorption effect, and finally have a significant impact on permeability. It is found that in the present analysis of the entire Bowland Shale, the overall permeability changes by 10.8% with the evolution of fractal distributed pores and by 41.3% with the evolution of fractal power-law fractures. This work provides a new approach for rapidly exploring the behavior of shale fractures and matrix pores at engineering scales. This work also offers a new and practical baseline for shale gas extraction assessment and fossil energy management.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EVALUATION OF SHALE GAS EXPLORATION BY MICROSTRUCTURE BEHAVIOR AND SHALE PERMEABILITY BASED ON FRACTAL THEORY AND UNDER MULTI-FIELD EFFECTS\",\"authors\":\"Dayu Ye, Guannan Liu, Bo-ming Yu, Xutong Zhang, Feng Gao\",\"doi\":\"10.1142/s0218348x23500792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key to shale gas exploration is the characterization of gas migration under the combination of multiple factors. To address the long-standing energy challenge of rapidly and accurately quantifying the behavior of natural fractures and matrix pores in shale at an engineering scale in interaction with gas migration. This study proposes an interdisciplinary model for shale gas extraction by adopting fractal theory. Five innovative microstructural parameters are developed to characterize the size and scale of natural matrix pores/fractures in shale, so as to investigate the contributions of fractal distributed pores and fractal power-law distributed fractures to shale gas extraction. The present results of the proposed model are consistent with the exploitation state of the UK Bowland Shale #114 well. The evolution of the shale microstructure will lead to changes in gas migration behavior throughout the reservoir and in turn affect shale stress, temperature and gas adsorption–desorption effect, and finally have a significant impact on permeability. It is found that in the present analysis of the entire Bowland Shale, the overall permeability changes by 10.8% with the evolution of fractal distributed pores and by 41.3% with the evolution of fractal power-law fractures. This work provides a new approach for rapidly exploring the behavior of shale fractures and matrix pores at engineering scales. This work also offers a new and practical baseline for shale gas extraction assessment and fossil energy management.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23500792\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x23500792","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

页岩气勘探的关键是多因素综合作用下的天然气运移特征。为了解决长期存在的能源挑战,在工程规模上快速准确地量化页岩中天然裂缝和基质孔隙与天然气运移相互作用的行为。本文采用分形理论,提出了页岩气开采的跨学科模型。建立了表征页岩天然基质孔隙/裂缝大小和规模的5个创新微观结构参数,探讨了分形分布孔隙和分形幂律分布裂缝对页岩气开采的贡献。该模型目前的结果与英国Bowland页岩114井的开发状态一致。页岩微观结构的演化将导致整个储层中气体运移行为的变化,进而影响页岩应力、温度和气体的吸附-解吸效果,最终对渗透率产生显著影响。研究发现,在整个Bowland页岩中,随着分形分布孔隙的演化,总渗透率变化了10.8%,随着分形幂律裂缝的演化,总渗透率变化了41.3%。这项工作为在工程尺度上快速探索页岩裂缝和基质孔隙的行为提供了一种新的方法。这项工作还为页岩气开采评估和化石能源管理提供了新的实用基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EVALUATION OF SHALE GAS EXPLORATION BY MICROSTRUCTURE BEHAVIOR AND SHALE PERMEABILITY BASED ON FRACTAL THEORY AND UNDER MULTI-FIELD EFFECTS
The key to shale gas exploration is the characterization of gas migration under the combination of multiple factors. To address the long-standing energy challenge of rapidly and accurately quantifying the behavior of natural fractures and matrix pores in shale at an engineering scale in interaction with gas migration. This study proposes an interdisciplinary model for shale gas extraction by adopting fractal theory. Five innovative microstructural parameters are developed to characterize the size and scale of natural matrix pores/fractures in shale, so as to investigate the contributions of fractal distributed pores and fractal power-law distributed fractures to shale gas extraction. The present results of the proposed model are consistent with the exploitation state of the UK Bowland Shale #114 well. The evolution of the shale microstructure will lead to changes in gas migration behavior throughout the reservoir and in turn affect shale stress, temperature and gas adsorption–desorption effect, and finally have a significant impact on permeability. It is found that in the present analysis of the entire Bowland Shale, the overall permeability changes by 10.8% with the evolution of fractal distributed pores and by 41.3% with the evolution of fractal power-law fractures. This work provides a new approach for rapidly exploring the behavior of shale fractures and matrix pores at engineering scales. This work also offers a new and practical baseline for shale gas extraction assessment and fossil energy management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
23.40%
发文量
319
审稿时长
>12 weeks
期刊介绍: The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes. Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality. The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信