实际K3曲面中的面积

IF 1.3 Q1 MATHEMATICS
I. Itenberg, G. Mikhalkin
{"title":"实际K3曲面中的面积","authors":"I. Itenberg, G. Mikhalkin","doi":"10.4171/emss/48","DOIUrl":null,"url":null,"abstract":"For a real K3-surface $X$, one can introduce areas of connected components of the real point set $\\mathbb{R} X$ of $X$ using a holomorphic symplectic form of $X$. These areas are defined up to simultaneous multiplication by a positive real number, so the areas of different components can be compared. In particular, it turns out that the area of a non-spherical component of $\\mathbb{R} X$ is always greater than the area of any spherical component. In this paper we explore further comparative restrictions on the area for real K3-surfaces admitting a suitable polarization of degree $2g - 2$ (where $g$ is a positive integer) and such that $\\mathbb{R} X$ has one non-spherical component and at least $g$ spherical components. For this purpose we introduce and study the notion of simple Harnack curves in real K3-surfaces, generalizing planar simple Harnack curves.","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Area in real K3-surfaces\",\"authors\":\"I. Itenberg, G. Mikhalkin\",\"doi\":\"10.4171/emss/48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a real K3-surface $X$, one can introduce areas of connected components of the real point set $\\\\mathbb{R} X$ of $X$ using a holomorphic symplectic form of $X$. These areas are defined up to simultaneous multiplication by a positive real number, so the areas of different components can be compared. In particular, it turns out that the area of a non-spherical component of $\\\\mathbb{R} X$ is always greater than the area of any spherical component. In this paper we explore further comparative restrictions on the area for real K3-surfaces admitting a suitable polarization of degree $2g - 2$ (where $g$ is a positive integer) and such that $\\\\mathbb{R} X$ has one non-spherical component and at least $g$ spherical components. For this purpose we introduce and study the notion of simple Harnack curves in real K3-surfaces, generalizing planar simple Harnack curves.\",\"PeriodicalId\":43833,\"journal\":{\"name\":\"EMS Surveys in Mathematical Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMS Surveys in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/emss/48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/emss/48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

对于实K3曲面$X$,可以使用$X$的全纯辛形式引入$X$实点集$\mathbb{R}X$的连通分量的面积。这些面积被定义为同时乘以一个正实数,因此可以比较不同分量的面积。特别地,结果证明$\mathbb{R}X$的非球形分量的面积总是大于任何球形分量的区域。在本文中,我们进一步探索了对真实K3表面面积的比较限制,该表面允许度为$2g-2$(其中$g$是正整数)的适当偏振,并且$\mathbb{R}X$具有一个非球面分量和至少$g$球面分量。为此,我们在实K3曲面中引入并研究了简单Harnack曲线的概念,推广了平面简单Harnach曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Area in real K3-surfaces
For a real K3-surface $X$, one can introduce areas of connected components of the real point set $\mathbb{R} X$ of $X$ using a holomorphic symplectic form of $X$. These areas are defined up to simultaneous multiplication by a positive real number, so the areas of different components can be compared. In particular, it turns out that the area of a non-spherical component of $\mathbb{R} X$ is always greater than the area of any spherical component. In this paper we explore further comparative restrictions on the area for real K3-surfaces admitting a suitable polarization of degree $2g - 2$ (where $g$ is a positive integer) and such that $\mathbb{R} X$ has one non-spherical component and at least $g$ spherical components. For this purpose we introduce and study the notion of simple Harnack curves in real K3-surfaces, generalizing planar simple Harnack curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信