改进的基于杯碟比和混合分类器的青光眼自动检测

D. K. Prasad, L. Vibha, K. Venugopal
{"title":"改进的基于杯碟比和混合分类器的青光眼自动检测","authors":"D. K. Prasad, L. Vibha, K. Venugopal","doi":"10.21917/ijivp.2018.0270","DOIUrl":null,"url":null,"abstract":"Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS\",\"authors\":\"D. K. Prasad, L. Vibha, K. Venugopal\",\"doi\":\"10.21917/ijivp.2018.0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics.\",\"PeriodicalId\":30615,\"journal\":{\"name\":\"ICTACT Journal on Image and Video Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICTACT Journal on Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21917/ijivp.2018.0270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

青光眼是人类眼部最复杂的疾病之一,若不及早发现,可逐渐导致永久性视力丧失。它可以在没有任何症状和警告的情况下损害视神经。不同的青光眼自动检测系统用于青光眼的早期分析,但检测精度不高。提出了一种利用混合分类器对彩色眼底图像进行有效处理的新型青光眼自动检测系统。该系统同时关注杯盘比(CDR)和其他特征,以提高青光眼的诊断精度。设计了形态学霍夫变换算法(MHTA)用于视盘分割。基于强度的椭圆曲线法可有效地分离光杯。进一步的特征提取和CDR值估计。最后,结合朴素贝叶斯分类器和K近邻(KNN)进行分类。采用高分辨率眼底(High Resolution Fundus, HRF)数据库对该系统进行了评估,在各种性能指标上优于文献中已有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPROVED AUTOMATIC DETECTION OF GLAUCOMA USING CUP-TO-DISK RATIO AND HYBRID CLASSIFIERS
Glaucoma is one of the most complicated disorder in human eye that causes permanent vision loss gradually if not detect in early stage. It can damage the optic nerve without any symptoms and warnings. Different automated glaucoma detection systems were developed for analyzing glaucoma at early stage but lacked good accuracy of detection. This paper proposes a novel automated glaucoma detection system which effectively process with digital colour fundus images using hybrid classifiers. The proposed system concentrates on both Cup-to Disk Ratio (CDR) and different features to improve the accuracy of glaucoma. Morphological Hough Transform Algorithm (MHTA) is designed for optic disc segmentation. Intensity based elliptic curve method is used for separation of optic cup effectively. Further feature extraction and CDR value can be estimated. Finally, classification is performed with combination of Naive Bayes Classifier and K Nearest Neighbour (KNN). The proposed system is evaluated by using High Resolution Fundus (HRF) database which outperforms the earlier methods in literature in various performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信