{"title":"基于公共安全视角的化工园区消防站选址研究——基于多米诺效应与危险化学品重大危害设施识别","authors":"Junhao Jiang, Xiaochun Zhang, Ruichao Wei, Shenshi Huang, Xiaolei Zhang","doi":"10.3390/fire6060218","DOIUrl":null,"url":null,"abstract":"In order to select the location of fire stations more scientifically and improve the efficiency of emergency management in chemical industry parks (CIPs), an improved risk calculation model for hazardous chemicals has been proposed by taking the domino effect and the identification of major hazardous installations for hazardous chemicals into account. In the analysis of the domino effect, the Monte Carlo simulation was used. Then, a location model of the fire stations was established with the optimization objectives of minimizing total cost and maximizing total risk coverage. The solving procedure of the location model is based on the augmented ε-constraint method combined with the TOPSIS method. Finally, a green chemical industry park was used as a case study for the validation and analysis of the location model. The results showed that the improved model could protect the high-risk areas, which is beneficial for the location decisions of fire stations.","PeriodicalId":36395,"journal":{"name":"Fire-Switzerland","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Location of Fire Stations in Chemical Industry Parks from a Public Safety Perspective: Considering the Domino Effect and the Identification of Major Hazard Installations for Hazardous Chemicals\",\"authors\":\"Junhao Jiang, Xiaochun Zhang, Ruichao Wei, Shenshi Huang, Xiaolei Zhang\",\"doi\":\"10.3390/fire6060218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to select the location of fire stations more scientifically and improve the efficiency of emergency management in chemical industry parks (CIPs), an improved risk calculation model for hazardous chemicals has been proposed by taking the domino effect and the identification of major hazardous installations for hazardous chemicals into account. In the analysis of the domino effect, the Monte Carlo simulation was used. Then, a location model of the fire stations was established with the optimization objectives of minimizing total cost and maximizing total risk coverage. The solving procedure of the location model is based on the augmented ε-constraint method combined with the TOPSIS method. Finally, a green chemical industry park was used as a case study for the validation and analysis of the location model. The results showed that the improved model could protect the high-risk areas, which is beneficial for the location decisions of fire stations.\",\"PeriodicalId\":36395,\"journal\":{\"name\":\"Fire-Switzerland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire-Switzerland\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/fire6060218\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire-Switzerland","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fire6060218","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Study on Location of Fire Stations in Chemical Industry Parks from a Public Safety Perspective: Considering the Domino Effect and the Identification of Major Hazard Installations for Hazardous Chemicals
In order to select the location of fire stations more scientifically and improve the efficiency of emergency management in chemical industry parks (CIPs), an improved risk calculation model for hazardous chemicals has been proposed by taking the domino effect and the identification of major hazardous installations for hazardous chemicals into account. In the analysis of the domino effect, the Monte Carlo simulation was used. Then, a location model of the fire stations was established with the optimization objectives of minimizing total cost and maximizing total risk coverage. The solving procedure of the location model is based on the augmented ε-constraint method combined with the TOPSIS method. Finally, a green chemical industry park was used as a case study for the validation and analysis of the location model. The results showed that the improved model could protect the high-risk areas, which is beneficial for the location decisions of fire stations.