扫描透射x射线显微镜在加拿大光源:进展和选定的应用在地球科学

IF 3.4 2区 化学 Q1 SPECTROSCOPY
Jian Wang, Jinhui Li
{"title":"扫描透射x射线显微镜在加拿大光源:进展和选定的应用在地球科学","authors":"Jian Wang, Jinhui Li","doi":"10.46770/as.2022.008","DOIUrl":null,"url":null,"abstract":": Synchrotron-based scanning transmission X-ray microscopy (STXM) efficiently integrates X-ray microscopy and X-ray absorption spectroscopy (XAS) to provide quantitative, chemically specific imaging of elements, functional groups, bonding, and oxidation states in 2D and 3D modes at high spatial resolution (sub-10 to 30 nm), high energy resolution, and low radiation doses. STXM has been increasingly used to study various materials and samples for life, earth, planetary, and environmental sciences. In this progress report and minireview, the STXM principle and instrumentation of conventional STXM and the latest STXM-ptychography at the Canadian Light Source are first discussed. Then, two representative applications of STXM on geoscience-related samples, including magnetotactic bacteria, soil microaggregates, and related systems, are presented to illustrate the strong capabilities and suitability of STXM to elucidate complex systems, processes, and associations in the natural sciences. Finally, the potential applications and prospects of the STXM-related techniques in characterizing precious extraterrestrial samples ( e.g. , lunar samples returned by China’s Chang’e-5 mission) are briefly discussed.","PeriodicalId":8642,"journal":{"name":"Atomic Spectroscopy","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scanning Transmission X-Ray Microscopy At The Canadian Light Source: Progress And Selected Applications In Geosciences\",\"authors\":\"Jian Wang, Jinhui Li\",\"doi\":\"10.46770/as.2022.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Synchrotron-based scanning transmission X-ray microscopy (STXM) efficiently integrates X-ray microscopy and X-ray absorption spectroscopy (XAS) to provide quantitative, chemically specific imaging of elements, functional groups, bonding, and oxidation states in 2D and 3D modes at high spatial resolution (sub-10 to 30 nm), high energy resolution, and low radiation doses. STXM has been increasingly used to study various materials and samples for life, earth, planetary, and environmental sciences. In this progress report and minireview, the STXM principle and instrumentation of conventional STXM and the latest STXM-ptychography at the Canadian Light Source are first discussed. Then, two representative applications of STXM on geoscience-related samples, including magnetotactic bacteria, soil microaggregates, and related systems, are presented to illustrate the strong capabilities and suitability of STXM to elucidate complex systems, processes, and associations in the natural sciences. Finally, the potential applications and prospects of the STXM-related techniques in characterizing precious extraterrestrial samples ( e.g. , lunar samples returned by China’s Chang’e-5 mission) are briefly discussed.\",\"PeriodicalId\":8642,\"journal\":{\"name\":\"Atomic Spectroscopy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.46770/as.2022.008\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.46770/as.2022.008","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 4

摘要

基于同步加速器的扫描透射x射线显微镜(STXM)有效地集成了x射线显微镜和x射线吸收光谱(XAS),以高空间分辨率(低于10至30 nm),高能量分辨率和低辐射剂量,在2D和3D模式下提供元素,官能团,键合和氧化态的定量,化学特异性成像。STXM越来越多地用于研究生命、地球、行星和环境科学的各种材料和样品。在这篇进展报告和综述中,首先讨论了STXM的原理和传统STXM的仪器以及加拿大光源的最新STXM型图。然后,介绍了STXM在地球科学相关样品(包括趋磁细菌、土壤微团聚体和相关系统)上的两个代表性应用,以说明STXM在阐明自然科学中的复杂系统、过程和关联方面的强大能力和适用性。最后,简要讨论了stxm相关技术在表征珍贵地外样本(如中国嫦娥五号任务返回的月球样本)方面的潜在应用和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scanning Transmission X-Ray Microscopy At The Canadian Light Source: Progress And Selected Applications In Geosciences
: Synchrotron-based scanning transmission X-ray microscopy (STXM) efficiently integrates X-ray microscopy and X-ray absorption spectroscopy (XAS) to provide quantitative, chemically specific imaging of elements, functional groups, bonding, and oxidation states in 2D and 3D modes at high spatial resolution (sub-10 to 30 nm), high energy resolution, and low radiation doses. STXM has been increasingly used to study various materials and samples for life, earth, planetary, and environmental sciences. In this progress report and minireview, the STXM principle and instrumentation of conventional STXM and the latest STXM-ptychography at the Canadian Light Source are first discussed. Then, two representative applications of STXM on geoscience-related samples, including magnetotactic bacteria, soil microaggregates, and related systems, are presented to illustrate the strong capabilities and suitability of STXM to elucidate complex systems, processes, and associations in the natural sciences. Finally, the potential applications and prospects of the STXM-related techniques in characterizing precious extraterrestrial samples ( e.g. , lunar samples returned by China’s Chang’e-5 mission) are briefly discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atomic Spectroscopy
Atomic Spectroscopy 物理-光谱学
CiteScore
5.30
自引率
14.70%
发文量
42
审稿时长
4.5 months
期刊介绍: The ATOMIC SPECTROSCOPY is a peer-reviewed international journal started in 1962 by Dr. Walter Slavin and now is published by Atomic Spectroscopy Press Limited (ASPL). It is intended for the rapid publication of both original articles and review articles in the fields of AAS, AFS, ICP-OES, ICP-MS, GD-MS, TIMS, SIMS, AMS, LIBS, XRF and related techniques. Manuscripts dealing with (i) instrumentation & fundamentals, (ii) methodology development & applications, and (iii) standard reference materials (SRMs) development can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信