$(n,d)$-共相干环,$(n,d)$-共半遗传环和$(n,d)$-$V -环

IF 0.5 Q3 MATHEMATICS
Zhu Zhanmin
{"title":"$(n,d)$-共相干环,$(n,d)$-共半遗传环和$(n,d)$-$V -环","authors":"Zhu Zhanmin","doi":"10.24330/ieja.852216","DOIUrl":null,"url":null,"abstract":". Let R be a ring, n be an non-negative integer and d be a positive integer or ∞ . A right R -module M is called ( n,d ) ∗ -projective if Ext 1 R ( M,C ) = 0 for every n -copresented right R -module C of injective dimension ≤ d ; a ring R is called right ( n,d ) -cocoherent if every n -copresented right R -module C with id ( C ) ≤ d is ( n +1)-copresented; a ring R is called right ( n,d ) -cosemihereditary if whenever 0 → C → E → A → 0 is exact, where C is n -copresented with id ( C ) ≤ d , E is finitely cogenerated injective, then A is injective; a ring R is called right ( n,d ) - V -ring if every n -copresented right R -module C with id ( C ) ≤ d is injective. Some characterizations of ( n,d ) ∗ -projective modules are given, right ( n,d )-cocoherent rings, right ( n,d )-cosemihereditary rings and right ( n,d )- V -rings are characterized by ( n,d ) ∗ -projective right R -modules. ( n,d ) ∗ -projective dimensions of modules over right ( n,d )-cocoherent rings are investigated.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$(n,d)$-COCOHERENT RINGS, $(n,d)$-COSEMIHEREDITARY RINGS AND $(n,d)$-$V$ -RINGS\",\"authors\":\"Zhu Zhanmin\",\"doi\":\"10.24330/ieja.852216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let R be a ring, n be an non-negative integer and d be a positive integer or ∞ . A right R -module M is called ( n,d ) ∗ -projective if Ext 1 R ( M,C ) = 0 for every n -copresented right R -module C of injective dimension ≤ d ; a ring R is called right ( n,d ) -cocoherent if every n -copresented right R -module C with id ( C ) ≤ d is ( n +1)-copresented; a ring R is called right ( n,d ) -cosemihereditary if whenever 0 → C → E → A → 0 is exact, where C is n -copresented with id ( C ) ≤ d , E is finitely cogenerated injective, then A is injective; a ring R is called right ( n,d ) - V -ring if every n -copresented right R -module C with id ( C ) ≤ d is injective. Some characterizations of ( n,d ) ∗ -projective modules are given, right ( n,d )-cocoherent rings, right ( n,d )-cosemihereditary rings and right ( n,d )- V -rings are characterized by ( n,d ) ∗ -projective right R -modules. ( n,d ) ∗ -projective dimensions of modules over right ( n,d )-cocoherent rings are investigated.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/ieja.852216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.852216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

。设R为环,n为非负整数,d为正整数或∞。对于每一个内射维数≤d的n表示的右R模C,如果Ext 1 R (M,C) = 0,则称右R模M为(n,d) * -射影;如果id (C)≤d的每个n -可表示的右R -模C都是(n +1)-可表示,则环R称为右(n,d)-共表示;如果当0→C→E→a→0是精确的,且C为n -表示为id (C)≤d时,E为有限共生单射,则a为单射,则环R为右(n,d) -共半遗传;如果每个id (C)≤d的n表示的右R模C是内射,则称环R为右(n,d) - V环。给出了(n,d) * -射影模的一些性质,右(n,d)-共相干环、右(n,d)-共半遗传环和右(n,d)- V -环用(n,d) * -射影右R -模表示。研究了右(n,d)-共相干环上模的(n,d) * -投影维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$(n,d)$-COCOHERENT RINGS, $(n,d)$-COSEMIHEREDITARY RINGS AND $(n,d)$-$V$ -RINGS
. Let R be a ring, n be an non-negative integer and d be a positive integer or ∞ . A right R -module M is called ( n,d ) ∗ -projective if Ext 1 R ( M,C ) = 0 for every n -copresented right R -module C of injective dimension ≤ d ; a ring R is called right ( n,d ) -cocoherent if every n -copresented right R -module C with id ( C ) ≤ d is ( n +1)-copresented; a ring R is called right ( n,d ) -cosemihereditary if whenever 0 → C → E → A → 0 is exact, where C is n -copresented with id ( C ) ≤ d , E is finitely cogenerated injective, then A is injective; a ring R is called right ( n,d ) - V -ring if every n -copresented right R -module C with id ( C ) ≤ d is injective. Some characterizations of ( n,d ) ∗ -projective modules are given, right ( n,d )-cocoherent rings, right ( n,d )-cosemihereditary rings and right ( n,d )- V -rings are characterized by ( n,d ) ∗ -projective right R -modules. ( n,d ) ∗ -projective dimensions of modules over right ( n,d )-cocoherent rings are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信