Zhen-zhong Wu, Jin-yan Yang, Yi Huang, You-xian Zhang
{"title":"钒对含钒土壤中烟草生长的影响","authors":"Zhen-zhong Wu, Jin-yan Yang, Yi Huang, You-xian Zhang","doi":"10.1080/03650340.2023.2175353","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tobacco exhibited a relatively strong environmental adaptability, and it is appealing to explore its vanadium stress-responsive characteristic. An indoor pot experiment with tobacco cultivated in soil with respectively 0 (control), 75, 150, 300, 600, and 900 mg kg−1 of exogenous pentavalent vanadium V(V) and in vanadium-rich soil from a mining area with 385.6 mg kg−1 of vanadium (marked as M0) was conducted. Results showed that tobacco growth was significantly (p< 0.05) inhibited at all treatments versus control. The seedlings could not survive at 900 mg kg−1 vanadium treatment. Vanadium was mainly concentrated in the root. Tobacco showed a relatively high vanadium bioconcentration capability (0.19 − 0.74) and a low translocation capability (0.02 − 0.03) in soil with exogenous vanadium addition treatments. Contrarily, at the control and M0 treatment, tobacco exhibited a low vanadium bioconcentration capability (0.06 − 0.08) and a relatively high translocation capability (0.06 − 0.09). For M0 treatment, the high percentage of vanadium in the residual fraction was also conducive to tobacco establishment in vanadium-loaded surroundings. Overall, tobacco showed the potential to colonize vanadium-rich soil. In soils after growing tobacco, Proteobacteria was the most abundant microbial community of the rhizospheric soil, followed by Actinobacteria.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"2799 - 2813"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of vanadium on Nicotiana tabacum L. grown in vanadium-loaded soil\",\"authors\":\"Zhen-zhong Wu, Jin-yan Yang, Yi Huang, You-xian Zhang\",\"doi\":\"10.1080/03650340.2023.2175353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tobacco exhibited a relatively strong environmental adaptability, and it is appealing to explore its vanadium stress-responsive characteristic. An indoor pot experiment with tobacco cultivated in soil with respectively 0 (control), 75, 150, 300, 600, and 900 mg kg−1 of exogenous pentavalent vanadium V(V) and in vanadium-rich soil from a mining area with 385.6 mg kg−1 of vanadium (marked as M0) was conducted. Results showed that tobacco growth was significantly (p< 0.05) inhibited at all treatments versus control. The seedlings could not survive at 900 mg kg−1 vanadium treatment. Vanadium was mainly concentrated in the root. Tobacco showed a relatively high vanadium bioconcentration capability (0.19 − 0.74) and a low translocation capability (0.02 − 0.03) in soil with exogenous vanadium addition treatments. Contrarily, at the control and M0 treatment, tobacco exhibited a low vanadium bioconcentration capability (0.06 − 0.08) and a relatively high translocation capability (0.06 − 0.09). For M0 treatment, the high percentage of vanadium in the residual fraction was also conducive to tobacco establishment in vanadium-loaded surroundings. Overall, tobacco showed the potential to colonize vanadium-rich soil. In soils after growing tobacco, Proteobacteria was the most abundant microbial community of the rhizospheric soil, followed by Actinobacteria.\",\"PeriodicalId\":8154,\"journal\":{\"name\":\"Archives of Agronomy and Soil Science\",\"volume\":\"69 1\",\"pages\":\"2799 - 2813\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Agronomy and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/03650340.2023.2175353\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2175353","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
摘要
烟草具有较强的环境适应性,对其钒胁迫响应特性的研究具有重要意义。在外源五价钒V(V)含量分别为0(对照)、75、150、300、600和900 mg kg - 1的土壤和钒含量为385.6 mg kg - 1(标记为M0)的矿区富钒土壤中进行室内盆栽试验。结果表明,与对照相比,各处理均显著抑制了烟草生长(p< 0.05)。在900 mg kg−1钒处理下,幼苗不能成活。钒主要集中在根中。烟草在外源添加钒的土壤中表现出较高的钒生物富集能力(0.19 ~ 0.74)和较低的钒转运能力(0.02 ~ 0.03)。相反,在对照和M0处理下,烟草表现出较低的钒生物富集能力(0.06 ~ 0.08)和较高的钒转运能力(0.06 ~ 0.09)。对于M0处理,残余部分中钒的高含量也有利于在含钒环境中成烟。总的来说,烟草显示出在富含钒的土壤中殖民的潜力。在植烟后土壤中,根际土壤微生物群落中以变形菌门最多,放线菌门次之。
Effect of vanadium on Nicotiana tabacum L. grown in vanadium-loaded soil
ABSTRACT Tobacco exhibited a relatively strong environmental adaptability, and it is appealing to explore its vanadium stress-responsive characteristic. An indoor pot experiment with tobacco cultivated in soil with respectively 0 (control), 75, 150, 300, 600, and 900 mg kg−1 of exogenous pentavalent vanadium V(V) and in vanadium-rich soil from a mining area with 385.6 mg kg−1 of vanadium (marked as M0) was conducted. Results showed that tobacco growth was significantly (p< 0.05) inhibited at all treatments versus control. The seedlings could not survive at 900 mg kg−1 vanadium treatment. Vanadium was mainly concentrated in the root. Tobacco showed a relatively high vanadium bioconcentration capability (0.19 − 0.74) and a low translocation capability (0.02 − 0.03) in soil with exogenous vanadium addition treatments. Contrarily, at the control and M0 treatment, tobacco exhibited a low vanadium bioconcentration capability (0.06 − 0.08) and a relatively high translocation capability (0.06 − 0.09). For M0 treatment, the high percentage of vanadium in the residual fraction was also conducive to tobacco establishment in vanadium-loaded surroundings. Overall, tobacco showed the potential to colonize vanadium-rich soil. In soils after growing tobacco, Proteobacteria was the most abundant microbial community of the rhizospheric soil, followed by Actinobacteria.
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.