通用复合运算符

IF 0.7 4区 数学 Q2 MATHEMATICS
Joao R. Carmo, S. Noor
{"title":"通用复合运算符","authors":"Joao R. Carmo, S. Noor","doi":"10.7900/jot.2020aug03.2301","DOIUrl":null,"url":null,"abstract":"A Hilbert space operator U is called \\textit{universal} (in the sense of Rota) if every Hilbert space operator is similar to a multiple of U restricted to one of its invariant subspaces. It follows that the \\textit{invariant subspace problem} for Hilbert spaces is equivalent to the statement that all minimal invariant subspaces for U are one dimensional. In this article we characterize all linear fractional composition operators Cϕf=f∘ϕ that have universal translates on both the classical Hardy spaces H2(C+) and H2(D) of the half-plane and the unit disk, respectively. The new example here is the composition operator on H2(D) with affine symbol ϕa(z)=az+(1−a) for $0","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Universal composition operators\",\"authors\":\"Joao R. Carmo, S. Noor\",\"doi\":\"10.7900/jot.2020aug03.2301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Hilbert space operator U is called \\\\textit{universal} (in the sense of Rota) if every Hilbert space operator is similar to a multiple of U restricted to one of its invariant subspaces. It follows that the \\\\textit{invariant subspace problem} for Hilbert spaces is equivalent to the statement that all minimal invariant subspaces for U are one dimensional. In this article we characterize all linear fractional composition operators Cϕf=f∘ϕ that have universal translates on both the classical Hardy spaces H2(C+) and H2(D) of the half-plane and the unit disk, respectively. The new example here is the composition operator on H2(D) with affine symbol ϕa(z)=az+(1−a) for $0\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020aug03.2301\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020aug03.2301","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

Hilbert空间算子U称为\textit{universal}(在Rota的意义上),如果每个Hilbert空间操作符都类似于限制在其不变子空间之一的U的倍数。因此,Hilbert空间的\textit{不变子空间问题}等价于U的所有最小不变子空间都是一维的声明。在本文中,我们分别刻画了在半平面和单位圆盘的经典Hardy空间H2(C++)和H2(D)上具有普遍平移的所有线性分式合成算子Cξf=f∘ξ。这里的新例子是H2(D)上的合成算子,仿射符号为ξa(z)=az+(1−a),为$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal composition operators
A Hilbert space operator U is called \textit{universal} (in the sense of Rota) if every Hilbert space operator is similar to a multiple of U restricted to one of its invariant subspaces. It follows that the \textit{invariant subspace problem} for Hilbert spaces is equivalent to the statement that all minimal invariant subspaces for U are one dimensional. In this article we characterize all linear fractional composition operators Cϕf=f∘ϕ that have universal translates on both the classical Hardy spaces H2(C+) and H2(D) of the half-plane and the unit disk, respectively. The new example here is the composition operator on H2(D) with affine symbol ϕa(z)=az+(1−a) for $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信