{"title":"通过凸函数对Berezin数不等式的若干改进","authors":"S. Saltan, Nazlı Baskan","doi":"10.31801/cfsuasmas.1089790","DOIUrl":null,"url":null,"abstract":"The Berezin transform $\\widetilde{A}$ and the Berezin number of an operator\n$A$ on the reproducing kernel Hilbert space over some set $\\Omega$ with\nnormalized reproducing kernel $\\widehat{k}_{\\lambda}$ are defined,\nrespectively, by $\\widetilde{A}(\\lambda)=\\left\\langle {A}\\widehat{k}_{\\lambda\n},\\widehat{k}_{\\lambda}\\right\\rangle ,\\ \\lambda\\in\\Omega$ and $\\mathrm{ber}%\n(A):=\\sup_{\\lambda\\in\\Omega}\\left\\vert \\widetilde{A}{(\\lambda)}\\right\\vert .$\nA straightforward comparison between these characteristics yields the\ninequalities $\\mathrm{ber}\\left( A\\right) \\leq\\frac{1}{2}\\left( \\left\\Vert\nA\\right\\Vert _{\\mathrm{ber}}+\\left\\Vert A^{2}\\right\\Vert _{\\mathrm{ber}}%\n^{1/2}\\right) $. In this paper, we study further inequalities relating them.\nNamely, we obtained some refinement of Berezin number inequalities involving\nconvex functions. In particular, for $A\\in\\mathcal{B}\\left( \\mathcal{H}%\n\\right) $ and $r\\geq1$ we show that\n\\[\n\\mathrm{ber}^{2r}\\left( A\\right) \\leq\\frac{1}{4}\\left( \\left\\Vert A^{\\ast\n}A+AA^{\\ast}\\right\\Vert _{\\mathrm{ber}}^{r}+\\left\\Vert A^{\\ast}A-AA^{\\ast\n}\\right\\Vert _{\\mathrm{ber}}^{r}\\right) +\\frac{1}{2}\\mathrm{ber}^{r}\\left(\nA^{2}\\right) .\n\\]","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some refinements of Berezin number inequalities via convex functions\",\"authors\":\"S. Saltan, Nazlı Baskan\",\"doi\":\"10.31801/cfsuasmas.1089790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Berezin transform $\\\\widetilde{A}$ and the Berezin number of an operator\\n$A$ on the reproducing kernel Hilbert space over some set $\\\\Omega$ with\\nnormalized reproducing kernel $\\\\widehat{k}_{\\\\lambda}$ are defined,\\nrespectively, by $\\\\widetilde{A}(\\\\lambda)=\\\\left\\\\langle {A}\\\\widehat{k}_{\\\\lambda\\n},\\\\widehat{k}_{\\\\lambda}\\\\right\\\\rangle ,\\\\ \\\\lambda\\\\in\\\\Omega$ and $\\\\mathrm{ber}%\\n(A):=\\\\sup_{\\\\lambda\\\\in\\\\Omega}\\\\left\\\\vert \\\\widetilde{A}{(\\\\lambda)}\\\\right\\\\vert .$\\nA straightforward comparison between these characteristics yields the\\ninequalities $\\\\mathrm{ber}\\\\left( A\\\\right) \\\\leq\\\\frac{1}{2}\\\\left( \\\\left\\\\Vert\\nA\\\\right\\\\Vert _{\\\\mathrm{ber}}+\\\\left\\\\Vert A^{2}\\\\right\\\\Vert _{\\\\mathrm{ber}}%\\n^{1/2}\\\\right) $. In this paper, we study further inequalities relating them.\\nNamely, we obtained some refinement of Berezin number inequalities involving\\nconvex functions. In particular, for $A\\\\in\\\\mathcal{B}\\\\left( \\\\mathcal{H}%\\n\\\\right) $ and $r\\\\geq1$ we show that\\n\\\\[\\n\\\\mathrm{ber}^{2r}\\\\left( A\\\\right) \\\\leq\\\\frac{1}{4}\\\\left( \\\\left\\\\Vert A^{\\\\ast\\n}A+AA^{\\\\ast}\\\\right\\\\Vert _{\\\\mathrm{ber}}^{r}+\\\\left\\\\Vert A^{\\\\ast}A-AA^{\\\\ast\\n}\\\\right\\\\Vert _{\\\\mathrm{ber}}^{r}\\\\right) +\\\\frac{1}{2}\\\\mathrm{ber}^{r}\\\\left(\\nA^{2}\\\\right) .\\n\\\\]\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1089790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1089790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Some refinements of Berezin number inequalities via convex functions
The Berezin transform $\widetilde{A}$ and the Berezin number of an operator
$A$ on the reproducing kernel Hilbert space over some set $\Omega$ with
normalized reproducing kernel $\widehat{k}_{\lambda}$ are defined,
respectively, by $\widetilde{A}(\lambda)=\left\langle {A}\widehat{k}_{\lambda
},\widehat{k}_{\lambda}\right\rangle ,\ \lambda\in\Omega$ and $\mathrm{ber}%
(A):=\sup_{\lambda\in\Omega}\left\vert \widetilde{A}{(\lambda)}\right\vert .$
A straightforward comparison between these characteristics yields the
inequalities $\mathrm{ber}\left( A\right) \leq\frac{1}{2}\left( \left\Vert
A\right\Vert _{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}%
^{1/2}\right) $. In this paper, we study further inequalities relating them.
Namely, we obtained some refinement of Berezin number inequalities involving
convex functions. In particular, for $A\in\mathcal{B}\left( \mathcal{H}%
\right) $ and $r\geq1$ we show that
\[
\mathrm{ber}^{2r}\left( A\right) \leq\frac{1}{4}\left( \left\Vert A^{\ast
}A+AA^{\ast}\right\Vert _{\mathrm{ber}}^{r}+\left\Vert A^{\ast}A-AA^{\ast
}\right\Vert _{\mathrm{ber}}^{r}\right) +\frac{1}{2}\mathrm{ber}^{r}\left(
A^{2}\right) .
\]