通过凸函数对Berezin数不等式的若干改进

IF 0.7 Q2 MATHEMATICS
S. Saltan, Nazlı Baskan
{"title":"通过凸函数对Berezin数不等式的若干改进","authors":"S. Saltan, Nazlı Baskan","doi":"10.31801/cfsuasmas.1089790","DOIUrl":null,"url":null,"abstract":"The Berezin transform $\\widetilde{A}$ and the Berezin number of an operator\n$A$ on the reproducing kernel Hilbert space over some set $\\Omega$ with\nnormalized reproducing kernel $\\widehat{k}_{\\lambda}$ are defined,\nrespectively, by $\\widetilde{A}(\\lambda)=\\left\\langle {A}\\widehat{k}_{\\lambda\n},\\widehat{k}_{\\lambda}\\right\\rangle ,\\ \\lambda\\in\\Omega$ and $\\mathrm{ber}%\n(A):=\\sup_{\\lambda\\in\\Omega}\\left\\vert \\widetilde{A}{(\\lambda)}\\right\\vert .$\nA straightforward comparison between these characteristics yields the\ninequalities $\\mathrm{ber}\\left( A\\right) \\leq\\frac{1}{2}\\left( \\left\\Vert\nA\\right\\Vert _{\\mathrm{ber}}+\\left\\Vert A^{2}\\right\\Vert _{\\mathrm{ber}}%\n^{1/2}\\right) $. In this paper, we study further inequalities relating them.\nNamely, we obtained some refinement of Berezin number inequalities involving\nconvex functions. In particular, for $A\\in\\mathcal{B}\\left( \\mathcal{H}%\n\\right) $ and $r\\geq1$ we show that\n\\[\n\\mathrm{ber}^{2r}\\left( A\\right) \\leq\\frac{1}{4}\\left( \\left\\Vert A^{\\ast\n}A+AA^{\\ast}\\right\\Vert _{\\mathrm{ber}}^{r}+\\left\\Vert A^{\\ast}A-AA^{\\ast\n}\\right\\Vert _{\\mathrm{ber}}^{r}\\right) +\\frac{1}{2}\\mathrm{ber}^{r}\\left(\nA^{2}\\right) .\n\\]","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some refinements of Berezin number inequalities via convex functions\",\"authors\":\"S. Saltan, Nazlı Baskan\",\"doi\":\"10.31801/cfsuasmas.1089790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Berezin transform $\\\\widetilde{A}$ and the Berezin number of an operator\\n$A$ on the reproducing kernel Hilbert space over some set $\\\\Omega$ with\\nnormalized reproducing kernel $\\\\widehat{k}_{\\\\lambda}$ are defined,\\nrespectively, by $\\\\widetilde{A}(\\\\lambda)=\\\\left\\\\langle {A}\\\\widehat{k}_{\\\\lambda\\n},\\\\widehat{k}_{\\\\lambda}\\\\right\\\\rangle ,\\\\ \\\\lambda\\\\in\\\\Omega$ and $\\\\mathrm{ber}%\\n(A):=\\\\sup_{\\\\lambda\\\\in\\\\Omega}\\\\left\\\\vert \\\\widetilde{A}{(\\\\lambda)}\\\\right\\\\vert .$\\nA straightforward comparison between these characteristics yields the\\ninequalities $\\\\mathrm{ber}\\\\left( A\\\\right) \\\\leq\\\\frac{1}{2}\\\\left( \\\\left\\\\Vert\\nA\\\\right\\\\Vert _{\\\\mathrm{ber}}+\\\\left\\\\Vert A^{2}\\\\right\\\\Vert _{\\\\mathrm{ber}}%\\n^{1/2}\\\\right) $. In this paper, we study further inequalities relating them.\\nNamely, we obtained some refinement of Berezin number inequalities involving\\nconvex functions. In particular, for $A\\\\in\\\\mathcal{B}\\\\left( \\\\mathcal{H}%\\n\\\\right) $ and $r\\\\geq1$ we show that\\n\\\\[\\n\\\\mathrm{ber}^{2r}\\\\left( A\\\\right) \\\\leq\\\\frac{1}{4}\\\\left( \\\\left\\\\Vert A^{\\\\ast\\n}A+AA^{\\\\ast}\\\\right\\\\Vert _{\\\\mathrm{ber}}^{r}+\\\\left\\\\Vert A^{\\\\ast}A-AA^{\\\\ast\\n}\\\\right\\\\Vert _{\\\\mathrm{ber}}^{r}\\\\right) +\\\\frac{1}{2}\\\\mathrm{ber}^{r}\\\\left(\\nA^{2}\\\\right) .\\n\\\\]\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1089790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1089790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个具有标准化再生核的集合$\Omega$上再生核Hilbert空间上算子$A$的Berezin变换$\widetilde{A}$和Berezin数{k}_{\lambda}$分别由$\widetilde{A}(\lambda)=\left\langle{A}\widehat定义{k}_{\lambda},\widehat{k}_{\lambda}\right\rangle,\\lambda\in\Omega$和$\mathrm{ber}%(A):=\sup_{\lamba\in\Omega}\left \vert\widetilde{A}{(\lambda)}\right \vert$这些特征之间的直接比较产生等式$\mathrm{ber}\left(A\right)\leq\frac{1}{2}\lift(\left\VertA\right\Vert_。在本文中,我们进一步研究了与它们相关的不等式。也就是说,我们得到了包含凸函数的Berezin数不等式的一些精化。特别是,对于$A\In\mathcal{B}\left(\mathcal{H}%\right)$和$r\geq1$,我们证明了\[\mathrm{ber}^{2r}\left(A\right)\leq\frac{1}{4}\left right)+\frac{1}{2}\mathrm{ber}^{r}\left(A^{2}\right)。\]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some refinements of Berezin number inequalities via convex functions
The Berezin transform $\widetilde{A}$ and the Berezin number of an operator $A$ on the reproducing kernel Hilbert space over some set $\Omega$ with normalized reproducing kernel $\widehat{k}_{\lambda}$ are defined, respectively, by $\widetilde{A}(\lambda)=\left\langle {A}\widehat{k}_{\lambda },\widehat{k}_{\lambda}\right\rangle ,\ \lambda\in\Omega$ and $\mathrm{ber}% (A):=\sup_{\lambda\in\Omega}\left\vert \widetilde{A}{(\lambda)}\right\vert .$ A straightforward comparison between these characteristics yields the inequalities $\mathrm{ber}\left( A\right) \leq\frac{1}{2}\left( \left\Vert A\right\Vert _{\mathrm{ber}}+\left\Vert A^{2}\right\Vert _{\mathrm{ber}}% ^{1/2}\right) $. In this paper, we study further inequalities relating them. Namely, we obtained some refinement of Berezin number inequalities involving convex functions. In particular, for $A\in\mathcal{B}\left( \mathcal{H}% \right) $ and $r\geq1$ we show that \[ \mathrm{ber}^{2r}\left( A\right) \leq\frac{1}{4}\left( \left\Vert A^{\ast }A+AA^{\ast}\right\Vert _{\mathrm{ber}}^{r}+\left\Vert A^{\ast}A-AA^{\ast }\right\Vert _{\mathrm{ber}}^{r}\right) +\frac{1}{2}\mathrm{ber}^{r}\left( A^{2}\right) . \]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信