链型可逆奇异点的塞弗特形式

Pub Date : 2020-02-25 DOI:10.1215/21562261-2022-0038
Umut Varolgunes
{"title":"链型可逆奇异点的塞弗特形式","authors":"Umut Varolgunes","doi":"10.1215/21562261-2022-0038","DOIUrl":null,"url":null,"abstract":"In this paper, we confirm a conjecture of Orlik-Randell from 1977 on the Seifert form of chain type invertible singularities. We use Lefschetz bifibration techniques as developed by Seidel (inspired by Arnold and Donaldson) and take advantage of the symmetries at hand. We believe that our method will be useful in understanding the homological/categorical version of Berglundt-Hubsch mirror conjecture for invertible singularities.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Seifert form of chain-type invertible singularities\",\"authors\":\"Umut Varolgunes\",\"doi\":\"10.1215/21562261-2022-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we confirm a conjecture of Orlik-Randell from 1977 on the Seifert form of chain type invertible singularities. We use Lefschetz bifibration techniques as developed by Seidel (inspired by Arnold and Donaldson) and take advantage of the symmetries at hand. We believe that our method will be useful in understanding the homological/categorical version of Berglundt-Hubsch mirror conjecture for invertible singularities.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文证实了Orlik Randell 1977年关于链型可逆奇点的Seifert形式的一个猜想。我们使用塞德尔(受阿诺德和唐纳森的启发)开发的Lefschetz双裂技术,并利用手头的对称性。我们相信,我们的方法将有助于理解Berglundt-Hubsch镜像猜想的同调/范畴版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Seifert form of chain-type invertible singularities
In this paper, we confirm a conjecture of Orlik-Randell from 1977 on the Seifert form of chain type invertible singularities. We use Lefschetz bifibration techniques as developed by Seidel (inspired by Arnold and Donaldson) and take advantage of the symmetries at hand. We believe that our method will be useful in understanding the homological/categorical version of Berglundt-Hubsch mirror conjecture for invertible singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信