利用三部门洛伦兹模型研究粮食、能源和水资源的相互联系

Q3 Engineering
K. Atoyev, L. Vovk, S. Shpyga
{"title":"利用三部门洛伦兹模型研究粮食、能源和水资源的相互联系","authors":"K. Atoyev, L. Vovk, S. Shpyga","doi":"10.34229/1028-0979-2021-3-12","DOIUrl":null,"url":null,"abstract":"The work is devoted to the problem of creating new methods for complex modeling and risk management, which will allow to study synergistic interactions between sources of risks of various origins under conditions of uncertainty. The paper proposes an approach to the study of the relationship between food, water and energy resources using the three-sectoral Lorenz model, combining in a single structure similarly described sectors of the economy, each of which is considered in terms of the productivity level, the workplaces number and the structural disturbances level. As a mathematical modeling result, the conditions of the deterministic chaos origin in the minimum economic development model were determined and possible reasons of the global economy growing vulnerability to small changes in management parameters were identified. The problem of determining effective controls for minimizing the total structural violations on selected time interval is considered. As a result of model experiments, the trajectories of control parameters changes were determined, which make it possible to reduce the structural violations number. This is achieved through changes in the ratio of supply and demand levels for products, demand and supply for workplaces creation. The influence of random perturbations on the deterministic attractors stochastic deformation of the Lorentz model is considered. It is shown that, under random perturbations, the trajectories of the stochastic system leave a deterministic attractor and form around it a certain bundle with the corresponding probabilistic distribution. The further model complicating possibility by taking into account other sectors of the economy using the Lorenz model in a complex form is considered. In this case the task of studying n sectors of economy is reduced to considering the behavior of an ensemble of n coupled oscillators that generate oscillations with frequencies ωn, respectively. Collective synchronization of oscillator data can be investigated using Kuramoto’s model. The problem of managing socio-economic development under the chaotic modes origin conditions is reduced for a complex model to controlling the frequency of a nonzero mean field generated by coupled oscillators.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"STUDYING THE INTERCONNECTION OF FOOD, ENERGY AND WATER RESOURCES USING THE THREE-SECTORAL LORENTZ MODEL\",\"authors\":\"K. Atoyev, L. Vovk, S. Shpyga\",\"doi\":\"10.34229/1028-0979-2021-3-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the problem of creating new methods for complex modeling and risk management, which will allow to study synergistic interactions between sources of risks of various origins under conditions of uncertainty. The paper proposes an approach to the study of the relationship between food, water and energy resources using the three-sectoral Lorenz model, combining in a single structure similarly described sectors of the economy, each of which is considered in terms of the productivity level, the workplaces number and the structural disturbances level. As a mathematical modeling result, the conditions of the deterministic chaos origin in the minimum economic development model were determined and possible reasons of the global economy growing vulnerability to small changes in management parameters were identified. The problem of determining effective controls for minimizing the total structural violations on selected time interval is considered. As a result of model experiments, the trajectories of control parameters changes were determined, which make it possible to reduce the structural violations number. This is achieved through changes in the ratio of supply and demand levels for products, demand and supply for workplaces creation. The influence of random perturbations on the deterministic attractors stochastic deformation of the Lorentz model is considered. It is shown that, under random perturbations, the trajectories of the stochastic system leave a deterministic attractor and form around it a certain bundle with the corresponding probabilistic distribution. The further model complicating possibility by taking into account other sectors of the economy using the Lorenz model in a complex form is considered. In this case the task of studying n sectors of economy is reduced to considering the behavior of an ensemble of n coupled oscillators that generate oscillations with frequencies ωn, respectively. Collective synchronization of oscillator data can be investigated using Kuramoto’s model. The problem of managing socio-economic development under the chaotic modes origin conditions is reduced for a complex model to controlling the frequency of a nonzero mean field generated by coupled oscillators.\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-3-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-3-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

这项工作致力于为复杂建模和风险管理创造新方法的问题,这将允许研究在不确定性条件下各种来源的风险源之间的协同作用。本文提出了一种使用三部门洛伦兹模型研究粮食、水和能源资源之间关系的方法,将类似描述的经济部门结合在一个单一结构中,每个部门都从生产力水平、工作场所数量和结构干扰水平来考虑。作为数学建模的结果,确定了最小经济发展模型中确定性混沌起源的条件,并确定了全球经济增长对管理参数微小变化的脆弱性的可能原因。考虑了在选定的时间间隔内确定有效控制以最小化总结构违规的问题。模型实验的结果是,确定了控制参数的变化轨迹,这使得减少结构违规次数成为可能。这是通过改变产品的供需比例、创造工作场所的需求和供应来实现的。考虑了随机扰动对洛伦兹模型确定性吸引子随机变形的影响。研究表明,在随机扰动下,随机系统的轨迹留下一个确定性吸引子,并在其周围形成一个具有相应概率分布的丛。考虑了以复杂形式使用洛伦兹模型将其他经济部门考虑在内的进一步模型使可能性复杂化的问题。在这种情况下,研究n个经济部门的任务被简化为考虑n个耦合振荡器的集合的行为,这些振荡器分别产生频率为ωn的振荡。振荡器数据的集体同步可以使用Kuramoto的模型来研究。将复杂模型在混沌模式起源条件下管理社会经济发展的问题简化为控制耦合振子产生的非零平均场的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDYING THE INTERCONNECTION OF FOOD, ENERGY AND WATER RESOURCES USING THE THREE-SECTORAL LORENTZ MODEL
The work is devoted to the problem of creating new methods for complex modeling and risk management, which will allow to study synergistic interactions between sources of risks of various origins under conditions of uncertainty. The paper proposes an approach to the study of the relationship between food, water and energy resources using the three-sectoral Lorenz model, combining in a single structure similarly described sectors of the economy, each of which is considered in terms of the productivity level, the workplaces number and the structural disturbances level. As a mathematical modeling result, the conditions of the deterministic chaos origin in the minimum economic development model were determined and possible reasons of the global economy growing vulnerability to small changes in management parameters were identified. The problem of determining effective controls for minimizing the total structural violations on selected time interval is considered. As a result of model experiments, the trajectories of control parameters changes were determined, which make it possible to reduce the structural violations number. This is achieved through changes in the ratio of supply and demand levels for products, demand and supply for workplaces creation. The influence of random perturbations on the deterministic attractors stochastic deformation of the Lorentz model is considered. It is shown that, under random perturbations, the trajectories of the stochastic system leave a deterministic attractor and form around it a certain bundle with the corresponding probabilistic distribution. The further model complicating possibility by taking into account other sectors of the economy using the Lorenz model in a complex form is considered. In this case the task of studying n sectors of economy is reduced to considering the behavior of an ensemble of n coupled oscillators that generate oscillations with frequencies ωn, respectively. Collective synchronization of oscillator data can be investigated using Kuramoto’s model. The problem of managing socio-economic development under the chaotic modes origin conditions is reduced for a complex model to controlling the frequency of a nonzero mean field generated by coupled oscillators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信