粗粒度过程与分形维数相结合的癫痫脑电分类

Dien Rahmawati, Achmad Rizal, D. K. Silalahi
{"title":"粗粒度过程与分形维数相结合的癫痫脑电分类","authors":"Dien Rahmawati, Achmad Rizal, D. K. Silalahi","doi":"10.22146/IJCCS.69845","DOIUrl":null,"url":null,"abstract":"  Epilepsy, cured by some offered treatments such as medication, surgery, and dietary plan, is a neurological brain disorder due to disturbed nerve cell activity characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects and classifies these seizures as one of the abnormality types in the brain within temporal and spectral content. The proposed method in this paper employed a combination of two feature extractions, namely coarse-grained and fractal dimension, a challenge to obtain a highly accurate procedure to evaluate and predict the epileptic EEG signal of normal, interictal, and seizure classes. The result of classification accuracy using variance fractal dimension (VFD) and quadratic support machine vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the predictive model in terms of the error rate. In addition, a higher scale number does not determine a higher accuracy in this study.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of Coarse-Grained Procedure and Fractal Dimension for Epileptic EEG Classification\",\"authors\":\"Dien Rahmawati, Achmad Rizal, D. K. Silalahi\",\"doi\":\"10.22146/IJCCS.69845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"  Epilepsy, cured by some offered treatments such as medication, surgery, and dietary plan, is a neurological brain disorder due to disturbed nerve cell activity characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects and classifies these seizures as one of the abnormality types in the brain within temporal and spectral content. The proposed method in this paper employed a combination of two feature extractions, namely coarse-grained and fractal dimension, a challenge to obtain a highly accurate procedure to evaluate and predict the epileptic EEG signal of normal, interictal, and seizure classes. The result of classification accuracy using variance fractal dimension (VFD) and quadratic support machine vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the predictive model in terms of the error rate. In addition, a higher scale number does not determine a higher accuracy in this study.\",\"PeriodicalId\":31625,\"journal\":{\"name\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCCS Indonesian Journal of Computing and Cybernetics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/IJCCS.69845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.69845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是一种神经性大脑疾病,可通过药物、手术和饮食计划等治疗方法治愈,其特征是神经细胞活动紊乱,反复发作。脑电图(EEG)信号处理检测这些癫痫发作,并将其分类为大脑中时间和频谱内容内的异常类型之一。本文提出的方法结合了两种特征提取,即粗粒度和分形维数,这对获得高精度的程序来评估和预测正常、发作间期和癫痫发作类别的癫痫EEG信号是一个挑战。使用方差分形维数(VFD)和数字尺度为10的二次支持机向量(SVM)的分类准确率最高,为99%,预测模型在错误率方面表现优异。此外,在本研究中,较高的标度数并不能确定较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of Coarse-Grained Procedure and Fractal Dimension for Epileptic EEG Classification
  Epilepsy, cured by some offered treatments such as medication, surgery, and dietary plan, is a neurological brain disorder due to disturbed nerve cell activity characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects and classifies these seizures as one of the abnormality types in the brain within temporal and spectral content. The proposed method in this paper employed a combination of two feature extractions, namely coarse-grained and fractal dimension, a challenge to obtain a highly accurate procedure to evaluate and predict the epileptic EEG signal of normal, interictal, and seizure classes. The result of classification accuracy using variance fractal dimension (VFD) and quadratic support machine vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the predictive model in terms of the error rate. In addition, a higher scale number does not determine a higher accuracy in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信