用于微流体应用的金属微齿轮的3D打印

Q3 Engineering
C. Wang, S. Chandra, X. Tan, S. Tor
{"title":"用于微流体应用的金属微齿轮的3D打印","authors":"C. Wang, S. Chandra, X. Tan, S. Tor","doi":"10.1142/s2424913021410022","DOIUrl":null,"url":null,"abstract":"Micro-fluidic devices are essential to handle fluids on the micro-meter scale (micro-scale), making them crucial to biomedical applications, where micro-gear is the key component for active fluid mixing. Rapid and direct fabrication of micro-gears is preferred because they are usually custom-made to specific applications and iterative design is needed. However, conventional manufacturing (CM) techniques for micro-fluidic devices are labor-intensive and time-consuming as multiple steps are required. Three-dimensional (3D) printing, or formally known as additive manufacturing (AM) offers a promising alternative over CM techniques in producing near-net shape complex geometries, given the micro-scale fabrication process. In this work, two types of powder-bed fusion (PBF) AM techniques, namely laser-PBF (L-PBF) and electron beam-PBF (EB-PBF) are used to benchmark 3D-printed micro-gears from stainless steel 316L micro-granular powders. Results showcase the preeminence of L-PBF over EB-PBF in generating distinguishable micro-scale features on gear profiles and superior micro-hardness in mechanical property. Overall, PBF metal AM shows significant promise in advancing the otherwise tedious state of CM for micro-gears.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printing of metallic micro-gears for micro-fluidic applications\",\"authors\":\"C. Wang, S. Chandra, X. Tan, S. Tor\",\"doi\":\"10.1142/s2424913021410022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-fluidic devices are essential to handle fluids on the micro-meter scale (micro-scale), making them crucial to biomedical applications, where micro-gear is the key component for active fluid mixing. Rapid and direct fabrication of micro-gears is preferred because they are usually custom-made to specific applications and iterative design is needed. However, conventional manufacturing (CM) techniques for micro-fluidic devices are labor-intensive and time-consuming as multiple steps are required. Three-dimensional (3D) printing, or formally known as additive manufacturing (AM) offers a promising alternative over CM techniques in producing near-net shape complex geometries, given the micro-scale fabrication process. In this work, two types of powder-bed fusion (PBF) AM techniques, namely laser-PBF (L-PBF) and electron beam-PBF (EB-PBF) are used to benchmark 3D-printed micro-gears from stainless steel 316L micro-granular powders. Results showcase the preeminence of L-PBF over EB-PBF in generating distinguishable micro-scale features on gear profiles and superior micro-hardness in mechanical property. Overall, PBF metal AM shows significant promise in advancing the otherwise tedious state of CM for micro-gears.\",\"PeriodicalId\":36070,\"journal\":{\"name\":\"Journal of Micromechanics and Molecular Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424913021410022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021410022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

微流体装置对于处理微米尺度(微尺度)的流体至关重要,这使得它们对生物医学应用至关重要,其中微齿轮是主动流体混合的关键部件。快速和直接制造微齿轮是首选,因为它们通常是针对特定应用定制的,并且需要迭代设计。然而,传统的微流体装置制造技术是劳动密集型和耗时的,因为需要多个步骤。三维(3D)打印,或正式称为增材制造(AM),在生产近净形状复杂几何形状方面,提供了比CM技术更有前途的替代方案,考虑到微尺度制造过程。在这项工作中,使用两种类型的粉末床熔合(PBF) AM技术,即激光PBF (L-PBF)和电子束PBF (EB-PBF),对不锈钢316L微颗粒粉末的3d打印微齿轮进行基准测试。结果表明,L-PBF比EB-PBF在产生可区分的齿轮轮廓微尺度特征方面具有优势,并且在力学性能方面具有优越的显微硬度。总体而言,PBF金属AM在推进微齿轮CM的其他繁琐状态方面显示出显着的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D printing of metallic micro-gears for micro-fluidic applications
Micro-fluidic devices are essential to handle fluids on the micro-meter scale (micro-scale), making them crucial to biomedical applications, where micro-gear is the key component for active fluid mixing. Rapid and direct fabrication of micro-gears is preferred because they are usually custom-made to specific applications and iterative design is needed. However, conventional manufacturing (CM) techniques for micro-fluidic devices are labor-intensive and time-consuming as multiple steps are required. Three-dimensional (3D) printing, or formally known as additive manufacturing (AM) offers a promising alternative over CM techniques in producing near-net shape complex geometries, given the micro-scale fabrication process. In this work, two types of powder-bed fusion (PBF) AM techniques, namely laser-PBF (L-PBF) and electron beam-PBF (EB-PBF) are used to benchmark 3D-printed micro-gears from stainless steel 316L micro-granular powders. Results showcase the preeminence of L-PBF over EB-PBF in generating distinguishable micro-scale features on gear profiles and superior micro-hardness in mechanical property. Overall, PBF metal AM shows significant promise in advancing the otherwise tedious state of CM for micro-gears.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信