Hoda Refaiy, Mai Fouad, Hoda Nasr El-Din, Eman H. El-shenawy
{"title":"一种新型临界间奥氏体淬火分区钢的组织和拉伸性能","authors":"Hoda Refaiy, Mai Fouad, Hoda Nasr El-Din, Eman H. El-shenawy","doi":"10.36547/ams.28.4.1578","DOIUrl":null,"url":null,"abstract":"Quenched and partitioned steel is a promising grade of advanced high-strength steel \"Third Generation\" for industrial applications such as the automotive industry. This research aimed to develop a novel ultra-high-strength quenched and partitioned steel with good ductility from a novel alloy with the composition of 0.37C- 3.65Mn- 0.65Si- 0.87Al- 1.5Ni-0.05P, wt.% which is non-standard. This quenched and partitioned steel was developed by inter-critical austenitization followed by quenching to a temperature below Martensite start temperature (80 and 120 oC), then partitioning at 450 oC for different times (20, 40, 60, 100, 140, and 180 s). Scanning electron microscope and X-Ray diffraction were utilized to investigate the microstructure and retained austenite characteristics. The tensile properties of developed Q&P specimens were also investigated. The results demonstrated that the specimen quenched at 120 oC and partitioned for 180s achieved a maximum strength elongation balance of 26 GPa.%. Both the specimens quenched at 80 and 120 oC displayed a decrease in strength values with extending holding time due to the tempering of primary martensite. Increasing partitioning time for the specimens quenched at 120 oC led to enhancing elongation, where a maximum total elongation of 19.7% was achieved for the partitioning time of 180s. \n ","PeriodicalId":44511,"journal":{"name":"Acta Metallurgica Slovaca","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MICROSTRUCTURE AND TENSILE PROPERTIES OF A RECENT INTER-CRITICALLY AUSTENITIZED QUENCHED AND PARTITIONED STEEL\",\"authors\":\"Hoda Refaiy, Mai Fouad, Hoda Nasr El-Din, Eman H. El-shenawy\",\"doi\":\"10.36547/ams.28.4.1578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quenched and partitioned steel is a promising grade of advanced high-strength steel \\\"Third Generation\\\" for industrial applications such as the automotive industry. This research aimed to develop a novel ultra-high-strength quenched and partitioned steel with good ductility from a novel alloy with the composition of 0.37C- 3.65Mn- 0.65Si- 0.87Al- 1.5Ni-0.05P, wt.% which is non-standard. This quenched and partitioned steel was developed by inter-critical austenitization followed by quenching to a temperature below Martensite start temperature (80 and 120 oC), then partitioning at 450 oC for different times (20, 40, 60, 100, 140, and 180 s). Scanning electron microscope and X-Ray diffraction were utilized to investigate the microstructure and retained austenite characteristics. The tensile properties of developed Q&P specimens were also investigated. The results demonstrated that the specimen quenched at 120 oC and partitioned for 180s achieved a maximum strength elongation balance of 26 GPa.%. Both the specimens quenched at 80 and 120 oC displayed a decrease in strength values with extending holding time due to the tempering of primary martensite. Increasing partitioning time for the specimens quenched at 120 oC led to enhancing elongation, where a maximum total elongation of 19.7% was achieved for the partitioning time of 180s. \\n \",\"PeriodicalId\":44511,\"journal\":{\"name\":\"Acta Metallurgica Slovaca\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Metallurgica Slovaca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/ams.28.4.1578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Slovaca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/ams.28.4.1578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
MICROSTRUCTURE AND TENSILE PROPERTIES OF A RECENT INTER-CRITICALLY AUSTENITIZED QUENCHED AND PARTITIONED STEEL
Quenched and partitioned steel is a promising grade of advanced high-strength steel "Third Generation" for industrial applications such as the automotive industry. This research aimed to develop a novel ultra-high-strength quenched and partitioned steel with good ductility from a novel alloy with the composition of 0.37C- 3.65Mn- 0.65Si- 0.87Al- 1.5Ni-0.05P, wt.% which is non-standard. This quenched and partitioned steel was developed by inter-critical austenitization followed by quenching to a temperature below Martensite start temperature (80 and 120 oC), then partitioning at 450 oC for different times (20, 40, 60, 100, 140, and 180 s). Scanning electron microscope and X-Ray diffraction were utilized to investigate the microstructure and retained austenite characteristics. The tensile properties of developed Q&P specimens were also investigated. The results demonstrated that the specimen quenched at 120 oC and partitioned for 180s achieved a maximum strength elongation balance of 26 GPa.%. Both the specimens quenched at 80 and 120 oC displayed a decrease in strength values with extending holding time due to the tempering of primary martensite. Increasing partitioning time for the specimens quenched at 120 oC led to enhancing elongation, where a maximum total elongation of 19.7% was achieved for the partitioning time of 180s.