{"title":"单细胞RNA测序定位异基因心脏移植小鼠的免疫细胞异质性","authors":"Zhonghua Tong, Ge Mang, Dongni Wang, Jingxuan Cui, Qiannan Yang, Maomao Zhang","doi":"10.15212/cvia.2023.0023","DOIUrl":null,"url":null,"abstract":"\nObjective: Immune cells play important roles in mediating allograft rejection and tolerance after cardiac transplantation. However, immune cell heterogeneity at the single-cell level, and how immune cell states shape transplantation immunity, remain incompletely characterized.\n\nMethods: We performed single-cell RNA sequencing (scRNA-seq) on immune cells in LNs from a mouse syngeneic and allogeneic cardiac transplantation model. Nine T cell clusters were identified through unsupervised analysis. Pathway enrichment analysis was used to explore the functional differences among cell subpopulations and to characterize the metabolic heterogeneity of T cells.\n\nResults: We comprehensively determined the transcriptional landscape of immune cells, particularly T cells, and their metabolic transcriptomes in LNs during mouse cardiac transplantation. On the basis of molecular and functional properties, we also identified T cell types associated with transplantation-associated immune processes, including cytotoxic CD8+ T cells, activated conventional CD4+ T cells, and dysfunctional Tregs. We further elucidated the contribution of JunB to the induction of Th17 cell differentiation and restriction of Treg development, and identified that HIF-1a participates in T cell metabolism and function.\n\nConclusions: We present the first systematic single-cell analysis of transcriptional variation within the T cell population, providing new insights for the development of novel therapeutic targets for allograft rejection.","PeriodicalId":41559,"journal":{"name":"Cardiovascular Innovations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Cell RNA Sequencing Maps Immune Cell Heterogeneity in Mice with Allogeneic Cardiac Transplantation\",\"authors\":\"Zhonghua Tong, Ge Mang, Dongni Wang, Jingxuan Cui, Qiannan Yang, Maomao Zhang\",\"doi\":\"10.15212/cvia.2023.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nObjective: Immune cells play important roles in mediating allograft rejection and tolerance after cardiac transplantation. However, immune cell heterogeneity at the single-cell level, and how immune cell states shape transplantation immunity, remain incompletely characterized.\\n\\nMethods: We performed single-cell RNA sequencing (scRNA-seq) on immune cells in LNs from a mouse syngeneic and allogeneic cardiac transplantation model. Nine T cell clusters were identified through unsupervised analysis. Pathway enrichment analysis was used to explore the functional differences among cell subpopulations and to characterize the metabolic heterogeneity of T cells.\\n\\nResults: We comprehensively determined the transcriptional landscape of immune cells, particularly T cells, and their metabolic transcriptomes in LNs during mouse cardiac transplantation. On the basis of molecular and functional properties, we also identified T cell types associated with transplantation-associated immune processes, including cytotoxic CD8+ T cells, activated conventional CD4+ T cells, and dysfunctional Tregs. We further elucidated the contribution of JunB to the induction of Th17 cell differentiation and restriction of Treg development, and identified that HIF-1a participates in T cell metabolism and function.\\n\\nConclusions: We present the first systematic single-cell analysis of transcriptional variation within the T cell population, providing new insights for the development of novel therapeutic targets for allograft rejection.\",\"PeriodicalId\":41559,\"journal\":{\"name\":\"Cardiovascular Innovations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Innovations and Applications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.15212/cvia.2023.0023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Innovations and Applications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15212/cvia.2023.0023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Single-Cell RNA Sequencing Maps Immune Cell Heterogeneity in Mice with Allogeneic Cardiac Transplantation
Objective: Immune cells play important roles in mediating allograft rejection and tolerance after cardiac transplantation. However, immune cell heterogeneity at the single-cell level, and how immune cell states shape transplantation immunity, remain incompletely characterized.
Methods: We performed single-cell RNA sequencing (scRNA-seq) on immune cells in LNs from a mouse syngeneic and allogeneic cardiac transplantation model. Nine T cell clusters were identified through unsupervised analysis. Pathway enrichment analysis was used to explore the functional differences among cell subpopulations and to characterize the metabolic heterogeneity of T cells.
Results: We comprehensively determined the transcriptional landscape of immune cells, particularly T cells, and their metabolic transcriptomes in LNs during mouse cardiac transplantation. On the basis of molecular and functional properties, we also identified T cell types associated with transplantation-associated immune processes, including cytotoxic CD8+ T cells, activated conventional CD4+ T cells, and dysfunctional Tregs. We further elucidated the contribution of JunB to the induction of Th17 cell differentiation and restriction of Treg development, and identified that HIF-1a participates in T cell metabolism and function.
Conclusions: We present the first systematic single-cell analysis of transcriptional variation within the T cell population, providing new insights for the development of novel therapeutic targets for allograft rejection.