{"title":"利用QTL-seq鉴定二倍体野生甘薯根厚的主要QTL","authors":"Keisuke Suematsu, Masaru Tanaka, S. Isobe","doi":"10.1080/1343943X.2021.1927766","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ipomoea trifida, the closest relative of sweetpotato, does not generally form storage roots, but some lines develop thick roots similar to the storage roots of the sweetpotato. Revealing the molecular mechanism of thick root development in I. trifida would help us understand the evolution of storage roots in the sweetpotato. In this study, we conducted a mapping method for quantitative trait loci (QTLs) known as QTL-seq, which is a kind of next-generation sequencing-based bulk segregant analysis. We performed QTL-seq using a backcross population (BC1F1) derived from two I. trifida lines: Mx23Hm, which does not show root-thickening; and 0431-1, which produces thick roots. The aim was to identify the QTL region involved in thick root development. As a result, a major QTL for root thickness (qRT1) was detected in the 2.94–8.71 Mb region of chr06 of Itr_r2.2, in both pot and field experiments. Six DNA markers were designed for qRT1 using InDels on chr06. Genotyping each BC1F1 individual based on these DNA markers agreed well with the SNP-Index of QTL-seq. Moreover, most individuals with 0431-1-type alleles of qRT1 developed thicker roots than individuals without 0431-1-type alleles of qRT1 in the BC2F2 population. The results of this study implied that qRT1 was an important QTL for regulating root thickness in I. trifida. GRAPHICAL ABSTRACT","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"25 1","pages":"120 - 129"},"PeriodicalIF":1.6000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1343943X.2021.1927766","citationCount":"1","resultStr":"{\"title\":\"Identification of a major QTL for root thickness in diploid wild sweetpotato (Ipomoea trifida) using QTL-seq\",\"authors\":\"Keisuke Suematsu, Masaru Tanaka, S. Isobe\",\"doi\":\"10.1080/1343943X.2021.1927766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ipomoea trifida, the closest relative of sweetpotato, does not generally form storage roots, but some lines develop thick roots similar to the storage roots of the sweetpotato. Revealing the molecular mechanism of thick root development in I. trifida would help us understand the evolution of storage roots in the sweetpotato. In this study, we conducted a mapping method for quantitative trait loci (QTLs) known as QTL-seq, which is a kind of next-generation sequencing-based bulk segregant analysis. We performed QTL-seq using a backcross population (BC1F1) derived from two I. trifida lines: Mx23Hm, which does not show root-thickening; and 0431-1, which produces thick roots. The aim was to identify the QTL region involved in thick root development. As a result, a major QTL for root thickness (qRT1) was detected in the 2.94–8.71 Mb region of chr06 of Itr_r2.2, in both pot and field experiments. Six DNA markers were designed for qRT1 using InDels on chr06. Genotyping each BC1F1 individual based on these DNA markers agreed well with the SNP-Index of QTL-seq. Moreover, most individuals with 0431-1-type alleles of qRT1 developed thicker roots than individuals without 0431-1-type alleles of qRT1 in the BC2F2 population. The results of this study implied that qRT1 was an important QTL for regulating root thickness in I. trifida. GRAPHICAL ABSTRACT\",\"PeriodicalId\":20259,\"journal\":{\"name\":\"Plant Production Science\",\"volume\":\"25 1\",\"pages\":\"120 - 129\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1343943X.2021.1927766\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Production Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1343943X.2021.1927766\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2021.1927766","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification of a major QTL for root thickness in diploid wild sweetpotato (Ipomoea trifida) using QTL-seq
ABSTRACT Ipomoea trifida, the closest relative of sweetpotato, does not generally form storage roots, but some lines develop thick roots similar to the storage roots of the sweetpotato. Revealing the molecular mechanism of thick root development in I. trifida would help us understand the evolution of storage roots in the sweetpotato. In this study, we conducted a mapping method for quantitative trait loci (QTLs) known as QTL-seq, which is a kind of next-generation sequencing-based bulk segregant analysis. We performed QTL-seq using a backcross population (BC1F1) derived from two I. trifida lines: Mx23Hm, which does not show root-thickening; and 0431-1, which produces thick roots. The aim was to identify the QTL region involved in thick root development. As a result, a major QTL for root thickness (qRT1) was detected in the 2.94–8.71 Mb region of chr06 of Itr_r2.2, in both pot and field experiments. Six DNA markers were designed for qRT1 using InDels on chr06. Genotyping each BC1F1 individual based on these DNA markers agreed well with the SNP-Index of QTL-seq. Moreover, most individuals with 0431-1-type alleles of qRT1 developed thicker roots than individuals without 0431-1-type alleles of qRT1 in the BC2F2 population. The results of this study implied that qRT1 was an important QTL for regulating root thickness in I. trifida. GRAPHICAL ABSTRACT
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.