有向拟阵的一个类别$\mathcal{O}$

IF 0.6 2区 数学 Q3 MATHEMATICS
Ethan Kowalenko, C. Mautner
{"title":"有向拟阵的一个类别$\\mathcal{O}$","authors":"Ethan Kowalenko, C. Mautner","doi":"10.4171/jca/71","DOIUrl":null,"url":null,"abstract":"We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A category $\\\\mathcal{O}$ for oriented matroids\",\"authors\":\"Ethan Kowalenko, C. Mautner\",\"doi\":\"10.4171/jca/71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\\\\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/71\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/71","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将一个足够泛型的面向矩阵程序和线性参数系统的选择与有限维代数联系起来,其表示理论类似于Bernstein- Gelfand- Gelfand范畴的块$\ mathical O$。当上述数据来自超平面排列的一般线性规划时,我们恢复了由Braden- Licata- Proudfoot- Webster定义的代数。将我们的构造应用到非线性定向矩阵规划中,提供了一大类新的代数。对于面向欧几里得的矩阵规划,所得到的代数是准遗传的和科祖尔的,就像在线性环境中一样。在非欧几里得情况下,我们得到了非拟遗传且不知道是Koszul的代数,但仍然有一个自然的标准模类,并且在梯度Grothendieck群的水平上满足拟遗传和Koszulity的数值类似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A category $\mathcal{O}$ for oriented matroids
We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信