{"title":"有向拟阵的一个类别$\\mathcal{O}$","authors":"Ethan Kowalenko, C. Mautner","doi":"10.4171/jca/71","DOIUrl":null,"url":null,"abstract":"We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A category $\\\\mathcal{O}$ for oriented matroids\",\"authors\":\"Ethan Kowalenko, C. Mautner\",\"doi\":\"10.4171/jca/71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\\\\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/71\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/71","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We associate to a sufficiently generic oriented matroid program and choice of linear system of parameters a finite dimensional algebra, whose representation theory is analogous to blocks of Bernstein--Gelfand--Gelfand category $\mathcal O$. When the data above comes from a generic linear program for a hyperplane arrangement, we recover the algebra defined by Braden--Licata--Proudfoot--Webster. Applying our construction to nonlinear oriented matroid programs provides a large new class of algebras. For Euclidean oriented matroid programs, the resulting algebras are quasi-hereditary and Koszul, as in the linear setting. In the non-Euclidean case, we obtain algebras that are not quasi-hereditary and not known to be Koszul, but still have a natural class of standard modules and satisfy numerical analogues of quasi-heredity and Koszulity on the level of graded Grothendieck groups.