Damiën van Berlo , Evita van de Steeg , Hossein Eslami Amirabadi , Rosalinde Masereeuw
{"title":"多器官芯片模型作为替代动物试验的药物处置评估的潜力","authors":"Damiën van Berlo , Evita van de Steeg , Hossein Eslami Amirabadi , Rosalinde Masereeuw","doi":"10.1016/j.cotox.2021.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>The development of new medicines suffers from attrition, especially in the development pipeline. Eight out of nine drug candidates entering the clinical testing phase fail, mostly due to poor safety and efficacy. The low predictive value of animal models, used in earlier phases of drug development, for effects in humans poses a major problem. In particular, drug disposition can markedly differentiate in experimental animals versus humans. Meanwhile, classic <em>in vitro</em> methods can be used but these models lack the complexity to mimic holistic physiological processes occurring in the human body, especially organ–organ interactions. Therefore, better predictive methods to investigate drug disposition in the preclinical phase are needed, for which recent developments in multiorgan-on-chip methods are very promising. To be able to capture human physiology as good as possible, multiorgan-on-chips should feature 1) human cells endogenously expressing main transporters and metabolizing enzymes; 2) organ models relevant for exposure route; 3) individual organs-on-chip connected in a physiologically relevant manner; 4) a tight cellular barrier between the compartments; 5) organ models properly polarized in 3D; 6) allow for sampling in all major compartments; 7) constructed from materials that do not absorb or adsorb the compound of interest; 8) cells should grow in absence of fetal calf serum and Matrigel; 9) validated with a panel of compounds with known characteristics in humans; 10) an integrated computer model translating concentrations to the human situation. Here, an overview of available systems is presented and the difficult route towards a fully validated system is discussed.</p></div>","PeriodicalId":37736,"journal":{"name":"Current Opinion in Toxicology","volume":"27 ","pages":"Pages 8-17"},"PeriodicalIF":6.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2021.05.001","citationCount":"15","resultStr":"{\"title\":\"The potential of multi-organ-on-chip models for assessment of drug disposition as alternative to animal testing\",\"authors\":\"Damiën van Berlo , Evita van de Steeg , Hossein Eslami Amirabadi , Rosalinde Masereeuw\",\"doi\":\"10.1016/j.cotox.2021.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of new medicines suffers from attrition, especially in the development pipeline. Eight out of nine drug candidates entering the clinical testing phase fail, mostly due to poor safety and efficacy. The low predictive value of animal models, used in earlier phases of drug development, for effects in humans poses a major problem. In particular, drug disposition can markedly differentiate in experimental animals versus humans. Meanwhile, classic <em>in vitro</em> methods can be used but these models lack the complexity to mimic holistic physiological processes occurring in the human body, especially organ–organ interactions. Therefore, better predictive methods to investigate drug disposition in the preclinical phase are needed, for which recent developments in multiorgan-on-chip methods are very promising. To be able to capture human physiology as good as possible, multiorgan-on-chips should feature 1) human cells endogenously expressing main transporters and metabolizing enzymes; 2) organ models relevant for exposure route; 3) individual organs-on-chip connected in a physiologically relevant manner; 4) a tight cellular barrier between the compartments; 5) organ models properly polarized in 3D; 6) allow for sampling in all major compartments; 7) constructed from materials that do not absorb or adsorb the compound of interest; 8) cells should grow in absence of fetal calf serum and Matrigel; 9) validated with a panel of compounds with known characteristics in humans; 10) an integrated computer model translating concentrations to the human situation. Here, an overview of available systems is presented and the difficult route towards a fully validated system is discussed.</p></div>\",\"PeriodicalId\":37736,\"journal\":{\"name\":\"Current Opinion in Toxicology\",\"volume\":\"27 \",\"pages\":\"Pages 8-17\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cotox.2021.05.001\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202021000188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202021000188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The potential of multi-organ-on-chip models for assessment of drug disposition as alternative to animal testing
The development of new medicines suffers from attrition, especially in the development pipeline. Eight out of nine drug candidates entering the clinical testing phase fail, mostly due to poor safety and efficacy. The low predictive value of animal models, used in earlier phases of drug development, for effects in humans poses a major problem. In particular, drug disposition can markedly differentiate in experimental animals versus humans. Meanwhile, classic in vitro methods can be used but these models lack the complexity to mimic holistic physiological processes occurring in the human body, especially organ–organ interactions. Therefore, better predictive methods to investigate drug disposition in the preclinical phase are needed, for which recent developments in multiorgan-on-chip methods are very promising. To be able to capture human physiology as good as possible, multiorgan-on-chips should feature 1) human cells endogenously expressing main transporters and metabolizing enzymes; 2) organ models relevant for exposure route; 3) individual organs-on-chip connected in a physiologically relevant manner; 4) a tight cellular barrier between the compartments; 5) organ models properly polarized in 3D; 6) allow for sampling in all major compartments; 7) constructed from materials that do not absorb or adsorb the compound of interest; 8) cells should grow in absence of fetal calf serum and Matrigel; 9) validated with a panel of compounds with known characteristics in humans; 10) an integrated computer model translating concentrations to the human situation. Here, an overview of available systems is presented and the difficult route towards a fully validated system is discussed.
期刊介绍:
The aims and scope of Current Opinion in Toxicology is to systematically provide the reader with timely and provocative views and opinions of the highest qualified and recognized experts on current advances in selected topics within the field of toxicology. The goal is that Current Opinion in Toxicology will be an invaluable source of information and perspective for researchers, teachers, managers and administrators, policy makers and students. Division of the subject into sections: For this purpose, the scope of Toxicology is divided into six selected high impact themed sections, each of which is reviewed once a year: Mechanistic Toxicology, Metabolic Toxicology, Risk assessment in Toxicology, Genomic Toxicology, Systems Toxicology, Translational Toxicology.