一般直线同余的奇异性

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Craizer, Ronaldo Garcia
{"title":"一般直线同余的奇异性","authors":"M. Craizer, Ronaldo Garcia","doi":"10.2969/jmsj/88348834","DOIUrl":null,"url":null,"abstract":"Line congruences are 2-dimensional families of lines in 3space. The singularities that appear in generic line congruences are folds, cusps and swallowtails ([7]). In this paper we give a geometric description of these singularities. The main tool used is the existence of an equiaffine pair defining a generic line congruence. Mathematics Subject Classification (2010). 53A55, 57R45, 53A20.","PeriodicalId":49988,"journal":{"name":"Journal of the Mathematical Society of Japan","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Singularities of generic line congruences\",\"authors\":\"M. Craizer, Ronaldo Garcia\",\"doi\":\"10.2969/jmsj/88348834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Line congruences are 2-dimensional families of lines in 3space. The singularities that appear in generic line congruences are folds, cusps and swallowtails ([7]). In this paper we give a geometric description of these singularities. The main tool used is the existence of an equiaffine pair defining a generic line congruence. Mathematics Subject Classification (2010). 53A55, 57R45, 53A20.\",\"PeriodicalId\":49988,\"journal\":{\"name\":\"Journal of the Mathematical Society of Japan\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mathematical Society of Japan\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/jmsj/88348834\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mathematical Society of Japan","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/88348834","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

直线同余是三维空间中的二维直线族。在一般线同余中出现的奇点是褶皱、尖点和燕尾([7])。本文给出了这些奇异点的几何描述。使用的主要工具是定义一般直线同余的等仿射对的存在性。数学学科分类(2010)。53a55, 57r45, 53a20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities of generic line congruences
Line congruences are 2-dimensional families of lines in 3space. The singularities that appear in generic line congruences are folds, cusps and swallowtails ([7]). In this paper we give a geometric description of these singularities. The main tool used is the existence of an equiaffine pair defining a generic line congruence. Mathematics Subject Classification (2010). 53A55, 57R45, 53A20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: The Journal of the Mathematical Society of Japan (JMSJ) was founded in 1948 and is published quarterly by the Mathematical Society of Japan (MSJ). It covers a wide range of pure mathematics. To maintain high standards, research articles in the journal are selected by the editorial board with the aid of distinguished international referees. Electronic access to the articles is offered through Project Euclid and J-STAGE. We provide free access to back issues three years after publication (available also at Online Index).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信