一个广义连续原积分及其应用

IF 0.1 Q4 MATHEMATICS
S. Mahanta, S. Ray
{"title":"一个广义连续原积分及其应用","authors":"S. Mahanta, S. Ray","doi":"10.14321/realanalexch.47.2.1645501301","DOIUrl":null,"url":null,"abstract":"Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalised Continuous Primitive Integral and Some of its Applications\",\"authors\":\"S. Mahanta, S. Ray\",\"doi\":\"10.14321/realanalexch.47.2.1645501301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.47.2.1645501301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.2.1645501301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

利用拉普拉斯导数,定义了一个Perron型积分,拉普拉斯积分。此外,还证明了该积分包含了Perron积分,并构造了一个拉普拉斯可积而非Perron可积函数的例子,证明了该积分是正确的。建立了微积分基本定理、哈克定理、分部积分、收敛定理、中值定理、泰勒定理的积分余数形式及其余数估计等积分性质。结果表明,关于Alexiewicz范数,所有拉普拉斯可积函数的空间是不完全的,并且密集地包含了所有多项式的集合。给出了泊松积分、广义常微分方程和高阶广义常微分方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalised Continuous Primitive Integral and Some of its Applications
Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Real Analysis Exchange
Real Analysis Exchange MATHEMATICS-
CiteScore
0.40
自引率
50.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信