{"title":"一个广义连续原积分及其应用","authors":"S. Mahanta, S. Ray","doi":"10.14321/realanalexch.47.2.1645501301","DOIUrl":null,"url":null,"abstract":"Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Generalised Continuous Primitive Integral and Some of its Applications\",\"authors\":\"S. Mahanta, S. Ray\",\"doi\":\"10.14321/realanalexch.47.2.1645501301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.47.2.1645501301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.2.1645501301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Generalised Continuous Primitive Integral and Some of its Applications
Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hake's theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylor's theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewicz's norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.