I. Louhichi, Fanilo Randriamahaleo, Lova Zakariasy
{"title":"一类Toeplitz算子的交换性","authors":"I. Louhichi, Fanilo Randriamahaleo, Lova Zakariasy","doi":"10.2478/conop-2014-0001","DOIUrl":null,"url":null,"abstract":"Abstract One of the major goals in the theory of Toeplitz operators on the Bergman space over the unit disk D in the complex place C is to completely describe the commutant of a given Toeplitz operator, that is, the set of all Toeplitz operators that commute with it. Here we shall study the commutants of a certain class of quasihomogeneous Toeplitz operators defined on the harmonic Bergman space.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"2 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2017-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/conop-2014-0001","citationCount":"3","resultStr":"{\"title\":\"On the Commutativity of a Certain Class of Toeplitz Operators\",\"authors\":\"I. Louhichi, Fanilo Randriamahaleo, Lova Zakariasy\",\"doi\":\"10.2478/conop-2014-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One of the major goals in the theory of Toeplitz operators on the Bergman space over the unit disk D in the complex place C is to completely describe the commutant of a given Toeplitz operator, that is, the set of all Toeplitz operators that commute with it. Here we shall study the commutants of a certain class of quasihomogeneous Toeplitz operators defined on the harmonic Bergman space.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/conop-2014-0001\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/conop-2014-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/conop-2014-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Commutativity of a Certain Class of Toeplitz Operators
Abstract One of the major goals in the theory of Toeplitz operators on the Bergman space over the unit disk D in the complex place C is to completely describe the commutant of a given Toeplitz operator, that is, the set of all Toeplitz operators that commute with it. Here we shall study the commutants of a certain class of quasihomogeneous Toeplitz operators defined on the harmonic Bergman space.