多步超前流量预测变化率的深度学习模型

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Woon Yang Tan, S. Lai, K. Pavitra, F. Teo, A. El-shafie
{"title":"多步超前流量预测变化率的深度学习模型","authors":"Woon Yang Tan, S. Lai, K. Pavitra, F. Teo, A. El-shafie","doi":"10.2166/hydro.2023.001","DOIUrl":null,"url":null,"abstract":"\n \n Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning model on rates of change for multi-step ahead streamflow forecasting\",\"authors\":\"Woon Yang Tan, S. Lai, K. Pavitra, F. Teo, A. El-shafie\",\"doi\":\"10.2166/hydro.2023.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

水安全和城市洪水已成为主要的可持续性问题。本文提出了一种新的方法,将变化率作为可持续发展议程中人工智能模型开发的最先进方法。采用多层感知器(MLP)和深度学习长短期记忆(LSTM)模型进行洪水预报。利用11个遥测站2008年至2021年的历史雨量资料,预测巴生河与安邦河汇合处的流量。MLP的初始结果表现不佳,低于正常预期,R = 0.4465, MAE = 3.7135, NSE = 0.1994, RMSE = 8.8556。同时,LSTM模型的r值提高了45%,达到0.9055。详细的调查发现,产生多个目标值的数据输入冗余已经扭曲了模型的性能。为了解决这一问题,在输入参数中引入了Qt,以Qt+0.5为目标值。结果有显著改善,R = 0.9359, MAE = 0.7722, NSE = 0.8756, RMSE = 3.4911。当采用变化率时,在实际流量与预测流量的图中可以看到令人印象深刻的改进。结果表明,变化率可以减少预测误差,并有助于作为早期洪水探测的额外层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning model on rates of change for multi-step ahead streamflow forecasting
Water security and urban flooding have become major sustainability issues. This paper presents a novel method to introduce rates of change as the state-of-the-art approach in artificial intelligence model development for sustainability agenda. Multi-layer perceptron (MLP) and deep learning long short-term memory (LSTM) models were considered for flood forecasting. Historical rainfall data from 2008 to 2021 at 11 telemetry stations were obtained to predict flow at the confluence between Klang River and Ampang River. The initial results of MLP yielded poor performance beneath normal expectations, which was R = 0.4465, MAE = 3.7135, NSE = 0.1994 and RMSE = 8.8556. Meanwhile, the LSTM model generated a 45% improvement in its R-value up to 0.9055. Detailed investigations found that the redundancy of data input that yielded multiple target values had distorted the model performance. Qt was introduced into input parameters to solve this issue, while Qt+0.5 was the target value. A significant improvement in the results was detected with R = 0.9359, MAE = 0.7722, NSE = 0.8756 and RMSE = 3.4911. When the rates of change were employed, an impressive improvement was seen for the plot of actual vs. forecasted flow. Findings showed that the rates of change could reduce forecast errors and were helpful as an additional layer of early flood detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信