{"title":"基于伪谱的时间分数阶平流扩散方程求解方法","authors":"A. Shokri, S. Mirzaei","doi":"10.22034/CMDE.2020.29307.1414","DOIUrl":null,"url":null,"abstract":"In this paper, a pseudo-spectral method with the Lagrange polynomial basis is proposed to solve the time-fractional advection-diffusion equation. A semi-discrete approximation scheme is used for conversion of this equation to a system of ordinary fractional differential equations. Also, to protect the high accuracy of the spectral approximation, the Mittag-Leffler function is used for the integration along the time variable. Some examples are performed to illustrate the accuracy and efficiency of the proposed method.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A pseudo-spectral based method for time-fractional advection-diffusion equation\",\"authors\":\"A. Shokri, S. Mirzaei\",\"doi\":\"10.22034/CMDE.2020.29307.1414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a pseudo-spectral method with the Lagrange polynomial basis is proposed to solve the time-fractional advection-diffusion equation. A semi-discrete approximation scheme is used for conversion of this equation to a system of ordinary fractional differential equations. Also, to protect the high accuracy of the spectral approximation, the Mittag-Leffler function is used for the integration along the time variable. Some examples are performed to illustrate the accuracy and efficiency of the proposed method.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.29307.1414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.29307.1414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A pseudo-spectral based method for time-fractional advection-diffusion equation
In this paper, a pseudo-spectral method with the Lagrange polynomial basis is proposed to solve the time-fractional advection-diffusion equation. A semi-discrete approximation scheme is used for conversion of this equation to a system of ordinary fractional differential equations. Also, to protect the high accuracy of the spectral approximation, the Mittag-Leffler function is used for the integration along the time variable. Some examples are performed to illustrate the accuracy and efficiency of the proposed method.