数据驱动设计的连续循环:重新构想物联网开发过程

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Boyeun Lee, R. Cooper, D. Hands, P. Coulton
{"title":"数据驱动设计的连续循环:重新构想物联网开发过程","authors":"Boyeun Lee, R. Cooper, D. Hands, P. Coulton","doi":"10.1017/S0890060421000299","DOIUrl":null,"url":null,"abstract":"Abstract With the emergence of Internet of Things (IoT) as a new source of “big” data and value creation, businesses encounter novel opportunities as well as challenges in IoT design. Although recent research argues that digital technology can enable new kinds of development processes that are distinctive from their counterparts in the 20th century, minimal attention has been focused on the IoT design process. In order to contextualize New Product Development (NPD) processes for IoT, this paper comprehensively interrogates existing, and emerging development approaches for products, services, software, and integrated products, and several factors that affect designing IoT. This discussion includes the generic development process, the commonalities and differences of different development approaches, and processes. The paper demonstrates that only a few existing approaches reflect vital characteristics of networked artifacts or the integration of data science within the development model, which is one of the key attributes of IoT design. From these investigations, we propose “The Mobius Strip Model of IoT Development ProcessI,” a conceptual process for IoT design, which is distinctive to others. The continuous loops of the IoT design integrate the attributes and phases of different processes and consist of two different development approaches and strategies. Understanding the particular attributes of the IoT NPD process can help novice and experienced researchers in both feeding and drawing insight from the broader design discourse.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Continuous cycles of data-enabled design: reimagining the IoT development process\",\"authors\":\"Boyeun Lee, R. Cooper, D. Hands, P. Coulton\",\"doi\":\"10.1017/S0890060421000299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the emergence of Internet of Things (IoT) as a new source of “big” data and value creation, businesses encounter novel opportunities as well as challenges in IoT design. Although recent research argues that digital technology can enable new kinds of development processes that are distinctive from their counterparts in the 20th century, minimal attention has been focused on the IoT design process. In order to contextualize New Product Development (NPD) processes for IoT, this paper comprehensively interrogates existing, and emerging development approaches for products, services, software, and integrated products, and several factors that affect designing IoT. This discussion includes the generic development process, the commonalities and differences of different development approaches, and processes. The paper demonstrates that only a few existing approaches reflect vital characteristics of networked artifacts or the integration of data science within the development model, which is one of the key attributes of IoT design. From these investigations, we propose “The Mobius Strip Model of IoT Development ProcessI,” a conceptual process for IoT design, which is distinctive to others. The continuous loops of the IoT design integrate the attributes and phases of different processes and consist of two different development approaches and strategies. Understanding the particular attributes of the IoT NPD process can help novice and experienced researchers in both feeding and drawing insight from the broader design discourse.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000299\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000299","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

摘要

摘要随着物联网作为“大”数据和价值创造的新来源的出现,企业在物联网设计方面遇到了新的机遇和挑战。尽管最近的研究认为,数字技术可以实现与20世纪同行不同的新型开发过程,但人们对物联网设计过程的关注却很少。为了将物联网的新产品开发(NPD)过程具体化,本文全面探讨了产品、服务、软件和集成产品的现有和新兴开发方法,以及影响物联网设计的几个因素。本讨论包括通用开发过程、不同开发方法和过程的共性和差异。该论文表明,只有少数现有方法反映了网络工件的重要特征或开发模型中数据科学的集成,这是物联网设计的关键属性之一。从这些调查中,我们提出了“物联网开发过程的Mobius Strip模型I”,这是一个物联网设计的概念过程,与其他人不同。物联网设计的连续循环集成了不同过程的属性和阶段,并由两种不同的开发方法和策略组成。了解物联网NPD过程的特定属性可以帮助新手和经验丰富的研究人员从更广泛的设计话语中获得见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous cycles of data-enabled design: reimagining the IoT development process
Abstract With the emergence of Internet of Things (IoT) as a new source of “big” data and value creation, businesses encounter novel opportunities as well as challenges in IoT design. Although recent research argues that digital technology can enable new kinds of development processes that are distinctive from their counterparts in the 20th century, minimal attention has been focused on the IoT design process. In order to contextualize New Product Development (NPD) processes for IoT, this paper comprehensively interrogates existing, and emerging development approaches for products, services, software, and integrated products, and several factors that affect designing IoT. This discussion includes the generic development process, the commonalities and differences of different development approaches, and processes. The paper demonstrates that only a few existing approaches reflect vital characteristics of networked artifacts or the integration of data science within the development model, which is one of the key attributes of IoT design. From these investigations, we propose “The Mobius Strip Model of IoT Development ProcessI,” a conceptual process for IoT design, which is distinctive to others. The continuous loops of the IoT design integrate the attributes and phases of different processes and consist of two different development approaches and strategies. Understanding the particular attributes of the IoT NPD process can help novice and experienced researchers in both feeding and drawing insight from the broader design discourse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信