利用病人转移解决急诊科拥挤问题的优化模型

IF 0.8 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Zeynab Oveysi, Ronald G. McGarvey, Kangwon Seo
{"title":"利用病人转移解决急诊科拥挤问题的优化模型","authors":"Zeynab Oveysi, Ronald G. McGarvey, Kangwon Seo","doi":"10.1155/2021/7120291","DOIUrl":null,"url":null,"abstract":"Overcrowding of emergency departments (EDs) is a problem that affected many hospitals especially during the response to emergency situations such as pandemics or disasters. Transferring nonemergency patients is one approach that can be utilized to address ED overcrowding. We propose a novel mixed-integer nonlinear programming (MINLP) model that explicitly considers queueing effects to address overcrowding in a network of EDs, via a combination of two decisions: modifying service capacity to EDs and transferring patients between EDs. Computational testing is performed using a Design of Experiments to determine the sensitivity of the MINLP solutions to changes in the various input parameters. Additional computational testing examines the effect of ED size on the number of transfers occurring in the system, identifying an efficient frontier for the tradeoff between system cost (measured as a function of the service capacity and the number of patient transfers) and the systemwide average expected waiting time. Taken together, these results suggest that our optimization model can identify a range of efficient alternatives for healthcare systems designing a network of EDs across multiple hospitals.","PeriodicalId":44178,"journal":{"name":"Advances in Operations Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimization Model to Address Overcrowding in Emergency Departments Using Patient Transfer\",\"authors\":\"Zeynab Oveysi, Ronald G. McGarvey, Kangwon Seo\",\"doi\":\"10.1155/2021/7120291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overcrowding of emergency departments (EDs) is a problem that affected many hospitals especially during the response to emergency situations such as pandemics or disasters. Transferring nonemergency patients is one approach that can be utilized to address ED overcrowding. We propose a novel mixed-integer nonlinear programming (MINLP) model that explicitly considers queueing effects to address overcrowding in a network of EDs, via a combination of two decisions: modifying service capacity to EDs and transferring patients between EDs. Computational testing is performed using a Design of Experiments to determine the sensitivity of the MINLP solutions to changes in the various input parameters. Additional computational testing examines the effect of ED size on the number of transfers occurring in the system, identifying an efficient frontier for the tradeoff between system cost (measured as a function of the service capacity and the number of patient transfers) and the systemwide average expected waiting time. Taken together, these results suggest that our optimization model can identify a range of efficient alternatives for healthcare systems designing a network of EDs across multiple hospitals.\",\"PeriodicalId\":44178,\"journal\":{\"name\":\"Advances in Operations Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/7120291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7120291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

急诊科过度拥挤是影响许多医院的一个问题,特别是在应对流行病或灾害等紧急情况时。转移非急诊病人是解决急诊科人满为患问题的一种方法。我们提出了一种新的混合整数非线性规划(MINLP)模型,该模型明确考虑排队效应,通过两种决策的组合来解决急诊科网络中的过度拥挤问题:修改急诊科的服务能力和在急诊科之间转移病人。使用实验设计进行计算测试,以确定MINLP解决方案对各种输入参数变化的灵敏度。额外的计算测试检查ED大小对系统中发生的转移数量的影响,确定系统成本(作为服务能力和患者转移数量的函数来衡量)和系统范围内平均预期等待时间之间权衡的有效边界。综上所述,这些结果表明,我们的优化模型可以为设计跨多家医院的急诊科网络的医疗保健系统确定一系列有效的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimization Model to Address Overcrowding in Emergency Departments Using Patient Transfer
Overcrowding of emergency departments (EDs) is a problem that affected many hospitals especially during the response to emergency situations such as pandemics or disasters. Transferring nonemergency patients is one approach that can be utilized to address ED overcrowding. We propose a novel mixed-integer nonlinear programming (MINLP) model that explicitly considers queueing effects to address overcrowding in a network of EDs, via a combination of two decisions: modifying service capacity to EDs and transferring patients between EDs. Computational testing is performed using a Design of Experiments to determine the sensitivity of the MINLP solutions to changes in the various input parameters. Additional computational testing examines the effect of ED size on the number of transfers occurring in the system, identifying an efficient frontier for the tradeoff between system cost (measured as a function of the service capacity and the number of patient transfers) and the systemwide average expected waiting time. Taken together, these results suggest that our optimization model can identify a range of efficient alternatives for healthcare systems designing a network of EDs across multiple hospitals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Operations Research
Advances in Operations Research OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
2.10
自引率
0.00%
发文量
12
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信