{"title":"特异性蛋白质-尿素相互作用","authors":"Zhi Wei Wong, Daiwen Yang","doi":"10.1016/j.mrl.2022.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanism of urea's action in protein denaturation remains largely unknown. To provide an experimental basis for molecular dynamics (MD) simulations on urea-protein interactions, we investigated the effect of urea on human intestinal fatty acid binding protein (hIFABP) by nuclear magnetic resonance (NMR). Hydrogen-deuterium exchange (HDX) rates at ≤ 2 M urea indicate that urea affects hIFABP in a residue-specific manner via direct urea-protein interactions and preferentially weakens hydrogen bonds between highly protected amides. Residue-specific effects of urea on NMR peak intensities and chemical shifts further support the presence of direct urea-protein interactions. Two-dimensional (2D) water-rotating frame Overhauser enhancement (ROE) data shows one protein-bound water molecule in contact with Val66 and Trp82, one putative bound water molecule in interaction with Thr76 and E-F loop, and that urea at low concentrations cannot displace these protein-bound water molecules. Our urea-nuclear Overhauser effect (NOE) experiments using <sup>15</sup>N-urea further show no tightly protein-bound urea molecules. Our results thus suggest specific, but weak or transient, urea-protein interactions, supporting the direct interaction model of urea denaturation.</p></div>","PeriodicalId":93594,"journal":{"name":"Magnetic Resonance Letters","volume":"2 3","pages":"Pages 131-138"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772516222000225/pdfft?md5=015cd3693d85df00a369ca62ecbac447&pid=1-s2.0-S2772516222000225-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Specific protein-urea interactions\",\"authors\":\"Zhi Wei Wong, Daiwen Yang\",\"doi\":\"10.1016/j.mrl.2022.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanism of urea's action in protein denaturation remains largely unknown. To provide an experimental basis for molecular dynamics (MD) simulations on urea-protein interactions, we investigated the effect of urea on human intestinal fatty acid binding protein (hIFABP) by nuclear magnetic resonance (NMR). Hydrogen-deuterium exchange (HDX) rates at ≤ 2 M urea indicate that urea affects hIFABP in a residue-specific manner via direct urea-protein interactions and preferentially weakens hydrogen bonds between highly protected amides. Residue-specific effects of urea on NMR peak intensities and chemical shifts further support the presence of direct urea-protein interactions. Two-dimensional (2D) water-rotating frame Overhauser enhancement (ROE) data shows one protein-bound water molecule in contact with Val66 and Trp82, one putative bound water molecule in interaction with Thr76 and E-F loop, and that urea at low concentrations cannot displace these protein-bound water molecules. Our urea-nuclear Overhauser effect (NOE) experiments using <sup>15</sup>N-urea further show no tightly protein-bound urea molecules. Our results thus suggest specific, but weak or transient, urea-protein interactions, supporting the direct interaction model of urea denaturation.</p></div>\",\"PeriodicalId\":93594,\"journal\":{\"name\":\"Magnetic Resonance Letters\",\"volume\":\"2 3\",\"pages\":\"Pages 131-138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772516222000225/pdfft?md5=015cd3693d85df00a369ca62ecbac447&pid=1-s2.0-S2772516222000225-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772516222000225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772516222000225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The mechanism of urea's action in protein denaturation remains largely unknown. To provide an experimental basis for molecular dynamics (MD) simulations on urea-protein interactions, we investigated the effect of urea on human intestinal fatty acid binding protein (hIFABP) by nuclear magnetic resonance (NMR). Hydrogen-deuterium exchange (HDX) rates at ≤ 2 M urea indicate that urea affects hIFABP in a residue-specific manner via direct urea-protein interactions and preferentially weakens hydrogen bonds between highly protected amides. Residue-specific effects of urea on NMR peak intensities and chemical shifts further support the presence of direct urea-protein interactions. Two-dimensional (2D) water-rotating frame Overhauser enhancement (ROE) data shows one protein-bound water molecule in contact with Val66 and Trp82, one putative bound water molecule in interaction with Thr76 and E-F loop, and that urea at low concentrations cannot displace these protein-bound water molecules. Our urea-nuclear Overhauser effect (NOE) experiments using 15N-urea further show no tightly protein-bound urea molecules. Our results thus suggest specific, but weak or transient, urea-protein interactions, supporting the direct interaction model of urea denaturation.