{"title":"Choquard系统最小作用变符号解的对称与非对称","authors":"Jianqing Chen, Qian Zhang","doi":"10.1515/anona-2022-0286","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\mathbb{R}}}^{N}N\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\left\\{\\begin{array}{l}-\\Delta u+u=\\frac{2p}{p+q}({I}_{\\alpha }\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\ -\\Delta v+v=\\frac{2q}{p+q}({I}_{\\alpha }\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\ u\\left(x)\\to 0,v\\left(x)\\to 0\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to \\infty ,\\end{array}\\right. where N + α N < p , q < N + α N − 2 \\frac{N+\\alpha }{N}\\lt p,q\\lt \\frac{N+\\alpha }{N-2} , 2 ∗ α {2}_{\\ast }^{\\alpha } denotes N + α N − 2 \\frac{N+\\alpha }{N-2} if N ≥ 3 N\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\ast }^{\\alpha }:= \\infty if N = 1 , 2 N=1,2 , I α {I}_{\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system\",\"authors\":\"Jianqing Chen, Qian Zhang\",\"doi\":\"10.1515/anona-2022-0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\\\mathbb{R}}}^{N}N\\\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+u=\\\\frac{2p}{p+q}({I}_{\\\\alpha }\\\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\\\\\ -\\\\Delta v+v=\\\\frac{2q}{p+q}({I}_{\\\\alpha }\\\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\\\\\ u\\\\left(x)\\\\to 0,v\\\\left(x)\\\\to 0\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{as}\\\\hspace{0.1em}\\\\hspace{0.33em}| x| \\\\to \\\\infty ,\\\\end{array}\\\\right. where N + α N < p , q < N + α N − 2 \\\\frac{N+\\\\alpha }{N}\\\\lt p,q\\\\lt \\\\frac{N+\\\\alpha }{N-2} , 2 ∗ α {2}_{\\\\ast }^{\\\\alpha } denotes N + α N − 2 \\\\frac{N+\\\\alpha }{N-2} if N ≥ 3 N\\\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\\\ast }^{\\\\alpha }:= \\\\infty if N = 1 , 2 N=1,2 , I α {I}_{\\\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\\\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0286\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0286","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
抽象在这个文章,我们认为《R N N≥1跟踪Choquard系统{{R \ mathbb {}}} ^ {N, N \ ge 1−Δu + u = 2 p p + q (Iα∗∣v∣q)∣你∣p−2,−Δv + v = 2 q p + q (Iα∗∣u∣p)∣v∣q−2 v, u (x)→0,v (x) x→0美国∣∣→∞,向左拐\{\开始{}{}- l阵\ u + u =三角洲frac {2p} {p + q} ({I}{阿尔法的\在的| v {|} q ^ {}) | u u ^ {p - 2},{|的\ \ - Delta v + v = frac {2q} {p + q} ({I}{阿尔法的\在的| u {|} p ^ {}) | v ^ {q-2}{|的v,剩下\ \ u (x)到0,v \向左拐(x)到0 \ hspace {1em} hspace{0。1em} \短信美国{}hspace{0。1em} \ hspace x{0。33em} | |到\ infty, \ end{阵列的好。哪里N +α< p, q < N +αN−2 \ frac {N + \阿尔法}{}中尉p, q \ \ frac {N + \阿尔法}{已经开始的,2∗的α{2}{在}^{\阿尔法的denotes N +αN−2 frac {N + \阿尔法}{已经开始,如果N≥3 \ ge 3和2∗α≔∞的{2}{\在}^{}:=阿尔法\ infty如果N = 1, 2的N = 120,我α{}{\阿尔法}是一个Riesz申请表。asymptotic社会行为》由analyzing Riesz潜在的能源,我们至少证明那个sign-changing解决方案有一个奇怪的动作和尊重《百万hyperplane symmetry当α\阿尔法是要么接近0或接近N N。我们的建议可以作为鲁伊斯和艾尔的代言。
Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system
Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\mathbb{R}}}^{N}N\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \left\{\begin{array}{l}-\Delta u+u=\frac{2p}{p+q}({I}_{\alpha }\ast | v{| }^{q})| u{| }^{p-2}u,\\ -\Delta v+v=\frac{2q}{p+q}({I}_{\alpha }\ast | u{| }^{p})| v{| }^{q-2}v,\\ u\left(x)\to 0,v\left(x)\to 0\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to \infty ,\end{array}\right. where N + α N < p , q < N + α N − 2 \frac{N+\alpha }{N}\lt p,q\lt \frac{N+\alpha }{N-2} , 2 ∗ α {2}_{\ast }^{\alpha } denotes N + α N − 2 \frac{N+\alpha }{N-2} if N ≥ 3 N\ge 3 and 2 ∗ α ≔ ∞ {2}_{\ast }^{\alpha }:= \infty if N = 1 , 2 N=1,2 , I α {I}_{\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.