Choquard系统最小作用变符号解的对称与非对称

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianqing Chen, Qian Zhang
{"title":"Choquard系统最小作用变符号解的对称与非对称","authors":"Jianqing Chen, Qian Zhang","doi":"10.1515/anona-2022-0286","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\mathbb{R}}}^{N}N\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\left\\{\\begin{array}{l}-\\Delta u+u=\\frac{2p}{p+q}({I}_{\\alpha }\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\ -\\Delta v+v=\\frac{2q}{p+q}({I}_{\\alpha }\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\ u\\left(x)\\to 0,v\\left(x)\\to 0\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to \\infty ,\\end{array}\\right. where N + α N < p , q < N + α N − 2 \\frac{N+\\alpha }{N}\\lt p,q\\lt \\frac{N+\\alpha }{N-2} , 2 ∗ α {2}_{\\ast }^{\\alpha } denotes N + α N − 2 \\frac{N+\\alpha }{N-2} if N ≥ 3 N\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\ast }^{\\alpha }:= \\infty if N = 1 , 2 N=1,2 , I α {I}_{\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system\",\"authors\":\"Jianqing Chen, Qian Zhang\",\"doi\":\"10.1515/anona-2022-0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\\\mathbb{R}}}^{N}N\\\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+u=\\\\frac{2p}{p+q}({I}_{\\\\alpha }\\\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\\\\\ -\\\\Delta v+v=\\\\frac{2q}{p+q}({I}_{\\\\alpha }\\\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\\\\\ u\\\\left(x)\\\\to 0,v\\\\left(x)\\\\to 0\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{as}\\\\hspace{0.1em}\\\\hspace{0.33em}| x| \\\\to \\\\infty ,\\\\end{array}\\\\right. where N + α N < p , q < N + α N − 2 \\\\frac{N+\\\\alpha }{N}\\\\lt p,q\\\\lt \\\\frac{N+\\\\alpha }{N-2} , 2 ∗ α {2}_{\\\\ast }^{\\\\alpha } denotes N + α N − 2 \\\\frac{N+\\\\alpha }{N-2} if N ≥ 3 N\\\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\\\ast }^{\\\\alpha }:= \\\\infty if N = 1 , 2 N=1,2 , I α {I}_{\\\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\\\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0286\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0286","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

抽象在这个文章,我们认为《R N N≥1跟踪Choquard系统{{R \ mathbb {}}} ^ {N, N \ ge 1−Δu + u = 2 p p + q (Iα∗∣v∣q)∣你∣p−2,−Δv + v = 2 q p + q (Iα∗∣u∣p)∣v∣q−2 v, u (x)→0,v (x) x→0美国∣∣→∞,向左拐\{\开始{}{}- l阵\ u + u =三角洲frac {2p} {p + q} ({I}{阿尔法的\在的| v {|} q ^ {}) | u u ^ {p - 2},{|的\ \ - Delta v + v = frac {2q} {p + q} ({I}{阿尔法的\在的| u {|} p ^ {}) | v ^ {q-2}{|的v,剩下\ \ u (x)到0,v \向左拐(x)到0 \ hspace {1em} hspace{0。1em} \短信美国{}hspace{0。1em} \ hspace x{0。33em} | |到\ infty, \ end{阵列的好。哪里N +α< p, q < N +αN−2 \ frac {N + \阿尔法}{}中尉p, q \ \ frac {N + \阿尔法}{已经开始的,2∗的α{2}{在}^{\阿尔法的denotes N +αN−2 frac {N + \阿尔法}{已经开始,如果N≥3 \ ge 3和2∗α≔∞的{2}{\在}^{}:=阿尔法\ infty如果N = 1, 2的N = 120,我α{}{\阿尔法}是一个Riesz申请表。asymptotic社会行为》由analyzing Riesz潜在的能源,我们至少证明那个sign-changing解决方案有一个奇怪的动作和尊重《百万hyperplane symmetry当α\阿尔法是要么接近0或接近N N。我们的建议可以作为鲁伊斯和艾尔的代言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system
Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\mathbb{R}}}^{N}N\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \left\{\begin{array}{l}-\Delta u+u=\frac{2p}{p+q}({I}_{\alpha }\ast | v{| }^{q})| u{| }^{p-2}u,\\ -\Delta v+v=\frac{2q}{p+q}({I}_{\alpha }\ast | u{| }^{p})| v{| }^{q-2}v,\\ u\left(x)\to 0,v\left(x)\to 0\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to \infty ,\end{array}\right. where N + α N < p , q < N + α N − 2 \frac{N+\alpha }{N}\lt p,q\lt \frac{N+\alpha }{N-2} , 2 ∗ α {2}_{\ast }^{\alpha } denotes N + α N − 2 \frac{N+\alpha }{N-2} if N ≥ 3 N\ge 3 and 2 ∗ α ≔ ∞ {2}_{\ast }^{\alpha }:= \infty if N = 1 , 2 N=1,2 , I α {I}_{\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信