Choquard系统最小作用变符号解的对称与非对称

IF 3.2 1区 数学 Q1 MATHEMATICS
Jianqing Chen, Qian Zhang
{"title":"Choquard系统最小作用变符号解的对称与非对称","authors":"Jianqing Chen, Qian Zhang","doi":"10.1515/anona-2022-0286","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\mathbb{R}}}^{N}N\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\left\\{\\begin{array}{l}-\\Delta u+u=\\frac{2p}{p+q}({I}_{\\alpha }\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\ -\\Delta v+v=\\frac{2q}{p+q}({I}_{\\alpha }\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\ u\\left(x)\\to 0,v\\left(x)\\to 0\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to \\infty ,\\end{array}\\right. where N + α N < p , q < N + α N − 2 \\frac{N+\\alpha }{N}\\lt p,q\\lt \\frac{N+\\alpha }{N-2} , 2 ∗ α {2}_{\\ast }^{\\alpha } denotes N + α N − 2 \\frac{N+\\alpha }{N-2} if N ≥ 3 N\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\ast }^{\\alpha }:= \\infty if N = 1 , 2 N=1,2 , I α {I}_{\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system\",\"authors\":\"Jianqing Chen, Qian Zhang\",\"doi\":\"10.1515/anona-2022-0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\\\\mathbb{R}}}^{N}N\\\\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+u=\\\\frac{2p}{p+q}({I}_{\\\\alpha }\\\\ast | v{| }^{q})| u{| }^{p-2}u,\\\\\\\\ -\\\\Delta v+v=\\\\frac{2q}{p+q}({I}_{\\\\alpha }\\\\ast | u{| }^{p})| v{| }^{q-2}v,\\\\\\\\ u\\\\left(x)\\\\to 0,v\\\\left(x)\\\\to 0\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{as}\\\\hspace{0.1em}\\\\hspace{0.33em}| x| \\\\to \\\\infty ,\\\\end{array}\\\\right. where N + α N < p , q < N + α N − 2 \\\\frac{N+\\\\alpha }{N}\\\\lt p,q\\\\lt \\\\frac{N+\\\\alpha }{N-2} , 2 ∗ α {2}_{\\\\ast }^{\\\\alpha } denotes N + α N − 2 \\\\frac{N+\\\\alpha }{N-2} if N ≥ 3 N\\\\ge 3 and 2 ∗ α ≔ ∞ {2}_{\\\\ast }^{\\\\alpha }:= \\\\infty if N = 1 , 2 N=1,2 , I α {I}_{\\\\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \\\\alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0286\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0286","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

抽象在这个文章,我们认为《R N N≥1跟踪Choquard系统{{R \ mathbb {}}} ^ {N, N \ ge 1−Δu + u = 2 p p + q (Iα∗∣v∣q)∣你∣p−2,−Δv + v = 2 q p + q (Iα∗∣u∣p)∣v∣q−2 v, u (x)→0,v (x) x→0美国∣∣→∞,向左拐\{\开始{}{}- l阵\ u + u =三角洲frac {2p} {p + q} ({I}{阿尔法的\在的| v {|} q ^ {}) | u u ^ {p - 2},{|的\ \ - Delta v + v = frac {2q} {p + q} ({I}{阿尔法的\在的| u {|} p ^ {}) | v ^ {q-2}{|的v,剩下\ \ u (x)到0,v \向左拐(x)到0 \ hspace {1em} hspace{0。1em} \短信美国{}hspace{0。1em} \ hspace x{0。33em} | |到\ infty, \ end{阵列的好。哪里N +α< p, q < N +αN−2 \ frac {N + \阿尔法}{}中尉p, q \ \ frac {N + \阿尔法}{已经开始的,2∗的α{2}{在}^{\阿尔法的denotes N +αN−2 frac {N + \阿尔法}{已经开始,如果N≥3 \ ge 3和2∗α≔∞的{2}{\在}^{}:=阿尔法\ infty如果N = 1, 2的N = 120,我α{}{\阿尔法}是一个Riesz申请表。asymptotic社会行为》由analyzing Riesz潜在的能源,我们至少证明那个sign-changing解决方案有一个奇怪的动作和尊重《百万hyperplane symmetry当α\阿尔法是要么接近0或接近N N。我们的建议可以作为鲁伊斯和艾尔的代言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and nonsymmetry of minimal action sign-changing solutions for the Choquard system
Abstract In this article, we consider the following Choquard system in R N N ≥ 1 {{\mathbb{R}}}^{N}N\ge 1 − Δ u + u = 2 p p + q ( I α ∗ ∣ v ∣ q ) ∣ u ∣ p − 2 u , − Δ v + v = 2 q p + q ( I α ∗ ∣ u ∣ p ) ∣ v ∣ q − 2 v , u ( x ) → 0 , v ( x ) → 0 as ∣ x ∣ → ∞ , \left\{\begin{array}{l}-\Delta u+u=\frac{2p}{p+q}({I}_{\alpha }\ast | v{| }^{q})| u{| }^{p-2}u,\\ -\Delta v+v=\frac{2q}{p+q}({I}_{\alpha }\ast | u{| }^{p})| v{| }^{q-2}v,\\ u\left(x)\to 0,v\left(x)\to 0\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to \infty ,\end{array}\right. where N + α N < p , q < N + α N − 2 \frac{N+\alpha }{N}\lt p,q\lt \frac{N+\alpha }{N-2} , 2 ∗ α {2}_{\ast }^{\alpha } denotes N + α N − 2 \frac{N+\alpha }{N-2} if N ≥ 3 N\ge 3 and 2 ∗ α ≔ ∞ {2}_{\ast }^{\alpha }:= \infty if N = 1 , 2 N=1,2 , I α {I}_{\alpha } is a Riesz potential. By analyzing the asymptotic behavior of Riesz potential energy, we prove that minimal action sign-changing solutions have an odd symmetry with respect to the a hyperplane when α \alpha is either close to 0 or close to N N . Our results can be regarded as a generalization of the results by Ruiz et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信