分形插值:一种顺序方法

IF 1 4区 数学
N. Vijender, M. A. Navascués
{"title":"分形插值:一种顺序方法","authors":"N. Vijender,&nbsp;M. A. Navascués","doi":"10.1007/s11766-021-3635-7","DOIUrl":null,"url":null,"abstract":"<div><p>Fractal interpolation is a modern technique to fit and analyze scientific data. We develop a new class of fractal interpolation functions which converge to a data generating (original) function for any choice of the scaling factors. Consequently, our method offers an alternative to the existing fractal interpolation functions (FIFs). We construct a sequence of <i>α</i>-FIFs using a suitable sequence of iterated function systems (IFSs). Without imposing any condition on the scaling vector, we establish constrained interpolation by using fractal functions. In particular, the constrained interpolation discussed herein includes a method to obtain fractal functions that preserve positivity inherent in the given data. The existence of <span>\\({{\\cal C}^r} - \\alpha - {\\rm{FIFs}}\\)</span> is investigated. We identify suitable conditions on the associated scaling factors so that <i>α</i>-FIFs preserve <i>r</i>-convexity in addition to the <span>\\({{\\cal C}^r} - {\\rm{smoothness}}\\)</span> of original function.</p></div>","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":"36 3","pages":"330 - 341"},"PeriodicalIF":1.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal interpolation: a sequential approach\",\"authors\":\"N. Vijender,&nbsp;M. A. Navascués\",\"doi\":\"10.1007/s11766-021-3635-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fractal interpolation is a modern technique to fit and analyze scientific data. We develop a new class of fractal interpolation functions which converge to a data generating (original) function for any choice of the scaling factors. Consequently, our method offers an alternative to the existing fractal interpolation functions (FIFs). We construct a sequence of <i>α</i>-FIFs using a suitable sequence of iterated function systems (IFSs). Without imposing any condition on the scaling vector, we establish constrained interpolation by using fractal functions. In particular, the constrained interpolation discussed herein includes a method to obtain fractal functions that preserve positivity inherent in the given data. The existence of <span>\\\\({{\\\\cal C}^r} - \\\\alpha - {\\\\rm{FIFs}}\\\\)</span> is investigated. We identify suitable conditions on the associated scaling factors so that <i>α</i>-FIFs preserve <i>r</i>-convexity in addition to the <span>\\\\({{\\\\cal C}^r} - {\\\\rm{smoothness}}\\\\)</span> of original function.</p></div>\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":\"36 3\",\"pages\":\"330 - 341\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11766-021-3635-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"1089","ListUrlMain":"https://link.springer.com/article/10.1007/s11766-021-3635-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分形插值是一种用于拟合和分析科学数据的现代技术。我们提出了一类新的分形插值函数,它收敛于一个数据生成(原始)函数。因此,我们的方法提供了一种替代现有的分形插值函数(FIFs)。我们利用合适的迭代函数系统序列构建了α- ifs序列。在不对尺度向量施加任何条件的情况下,利用分形函数建立了约束插值。特别地,本文讨论的约束插值包括一种获得分形函数的方法,该分形函数保持给定数据固有的正性。研究了\({{\cal C}^r} - \alpha - {\rm{FIFs}}\)的存在性。我们确定了相应比例因子的合适条件,使得α-FIFs除了保持原函数的\({{\cal C}^r} - {\rm{smoothness}}\)外,还能保持r-凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal interpolation: a sequential approach

Fractal interpolation is a modern technique to fit and analyze scientific data. We develop a new class of fractal interpolation functions which converge to a data generating (original) function for any choice of the scaling factors. Consequently, our method offers an alternative to the existing fractal interpolation functions (FIFs). We construct a sequence of α-FIFs using a suitable sequence of iterated function systems (IFSs). Without imposing any condition on the scaling vector, we establish constrained interpolation by using fractal functions. In particular, the constrained interpolation discussed herein includes a method to obtain fractal functions that preserve positivity inherent in the given data. The existence of \({{\cal C}^r} - \alpha - {\rm{FIFs}}\) is investigated. We identify suitable conditions on the associated scaling factors so that α-FIFs preserve r-convexity in addition to the \({{\cal C}^r} - {\rm{smoothness}}\) of original function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信