{"title":"周变换的对偶","authors":"M. Meo","doi":"10.1515/coma-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract We define a dual of the Chow transformation of currents on the complex projective space. This transformation factorizes a left inverse of the Chow transformation and its composition with the Chow transformation is a right inverse of a linear diferential operator. In such a way we complete the general scheme of integral geometry for the Chow transformation. On another hand we prove the existence of a well defined closed positive conormal current associated to every closed positive current on the projective space. This is a consequence of the existence of a dual current, defined on the dual projective space. This allows us to extend to the case of a closed positive current the known inversion formula for the conormal of the Chow divisor of an effective algebraic cycle.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"5 1","pages":"158 - 194"},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2018-0011","citationCount":"1","resultStr":"{\"title\":\"A Dual of the Chow Transformation\",\"authors\":\"M. Meo\",\"doi\":\"10.1515/coma-2018-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define a dual of the Chow transformation of currents on the complex projective space. This transformation factorizes a left inverse of the Chow transformation and its composition with the Chow transformation is a right inverse of a linear diferential operator. In such a way we complete the general scheme of integral geometry for the Chow transformation. On another hand we prove the existence of a well defined closed positive conormal current associated to every closed positive current on the projective space. This is a consequence of the existence of a dual current, defined on the dual projective space. This allows us to extend to the case of a closed positive current the known inversion formula for the conormal of the Chow divisor of an effective algebraic cycle.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"5 1\",\"pages\":\"158 - 194\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2018-0011\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2018-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract We define a dual of the Chow transformation of currents on the complex projective space. This transformation factorizes a left inverse of the Chow transformation and its composition with the Chow transformation is a right inverse of a linear diferential operator. In such a way we complete the general scheme of integral geometry for the Chow transformation. On another hand we prove the existence of a well defined closed positive conormal current associated to every closed positive current on the projective space. This is a consequence of the existence of a dual current, defined on the dual projective space. This allows us to extend to the case of a closed positive current the known inversion formula for the conormal of the Chow divisor of an effective algebraic cycle.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.