关于一些Sylow子群的具有正嵌入极大子群的有限群的p-幂零性

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Trofimuk
{"title":"关于一些Sylow子群的具有正嵌入极大子群的有限群的p-幂零性","authors":"A. Trofimuk","doi":"10.12958/adm1128","DOIUrl":null,"url":null,"abstract":"Let \\(G\\) be a finite group and \\(P\\) be a \\(p\\)-subgroup of \\(G\\). If \\(P\\) is a Sylow subgroup of some normal subgroup of \\(G\\), then we say that \\(P\\) is normally embedded in \\(G\\). Groups with normally embedded maximal subgroups of Sylow \\(p\\)-subgroup, where \\({(|G|, p-1)=1}\\), are studied. In particular, the \\(p\\)-nilpotency of such groups is proved.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups\",\"authors\":\"A. Trofimuk\",\"doi\":\"10.12958/adm1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(G\\\\) be a finite group and \\\\(P\\\\) be a \\\\(p\\\\)-subgroup of \\\\(G\\\\). If \\\\(P\\\\) is a Sylow subgroup of some normal subgroup of \\\\(G\\\\), then we say that \\\\(P\\\\) is normally embedded in \\\\(G\\\\). Groups with normally embedded maximal subgroups of Sylow \\\\(p\\\\)-subgroup, where \\\\({(|G|, p-1)=1}\\\\), are studied. In particular, the \\\\(p\\\\)-nilpotency of such groups is proved.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设\(G\)是有限群,\(P\)是\(G\\)的\(P\)-子群。如果\(P\)是\(G\)的某个正规子群的Sylow子群,则我们说\(P\\)正规嵌入在\(G\\)中。研究了Sylow\(p\)-子群的具有正嵌入极大子群的群,其中\({(|G|,p-1)=1}\)。特别地,证明了这类群的幂零性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On p-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups
Let \(G\) be a finite group and \(P\) be a \(p\)-subgroup of \(G\). If \(P\) is a Sylow subgroup of some normal subgroup of \(G\), then we say that \(P\) is normally embedded in \(G\). Groups with normally embedded maximal subgroups of Sylow \(p\)-subgroup, where \({(|G|, p-1)=1}\), are studied. In particular, the \(p\)-nilpotency of such groups is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra & Discrete Mathematics
Algebra & Discrete Mathematics MATHEMATICS, APPLIED-
CiteScore
0.50
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信