{"title":"简支流体输送管超临界区颤振悖论的一种解释","authors":"Ding Ming, Meng Shuai, Liu Zhen, Zhang Junhan","doi":"10.1115/1.4062718","DOIUrl":null,"url":null,"abstract":"\n Employing traditional Galerkin method, a coupled-mode flutter is predicted in the supercritical region of simply-supported pipes which constitutes a paradox since the internal flow effect is conservative and there is no energy to sustain the oscillation. Although there is a consensus that the flutter does not exist, the intrinsic mechanism remains to be clarified. This study has found that the internal flow induced Coriolis force term cannot be decoupled in traditional Galerkin method which leads to the dissatisfaction of the convergence conditions required in weighted residual approach (WRA). Moreover, the disparities in the predicted complex frequencies have been witnessed at different base function numbers when the internal flow velocity is sufficiently large. A modified Galerkin method adopting a new set of weighting functions is proposed based on WRA, and the Coriolis force term disappears by use of the orthogonality relations (it is stated that the Coriolis force is not directly omitted). Thus, a convergent solution for the set of residual functions which are identically equal to zeros can be guaranteed. Employing the modified method, the convergence in simulations is confirmed and the flutter phenomenon does not occur. This study can be a workbench for the study on the unsolved or partly solved issues in simulations of fluid-conveying pipes. Moreover, it has demonstrated that the predictions in traditional Galerkin method overestimate the natural frequencies, and it becomes more profound in higher-order natural modes at larger internal flow velocities which are of practice significance for dynamic analysis of flexible pipeline systems.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Explanation for the Flutter Paradox in the Supercritical Region of a Simply-Supported Fluid-Conveying Pipe\",\"authors\":\"Ding Ming, Meng Shuai, Liu Zhen, Zhang Junhan\",\"doi\":\"10.1115/1.4062718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Employing traditional Galerkin method, a coupled-mode flutter is predicted in the supercritical region of simply-supported pipes which constitutes a paradox since the internal flow effect is conservative and there is no energy to sustain the oscillation. Although there is a consensus that the flutter does not exist, the intrinsic mechanism remains to be clarified. This study has found that the internal flow induced Coriolis force term cannot be decoupled in traditional Galerkin method which leads to the dissatisfaction of the convergence conditions required in weighted residual approach (WRA). Moreover, the disparities in the predicted complex frequencies have been witnessed at different base function numbers when the internal flow velocity is sufficiently large. A modified Galerkin method adopting a new set of weighting functions is proposed based on WRA, and the Coriolis force term disappears by use of the orthogonality relations (it is stated that the Coriolis force is not directly omitted). Thus, a convergent solution for the set of residual functions which are identically equal to zeros can be guaranteed. Employing the modified method, the convergence in simulations is confirmed and the flutter phenomenon does not occur. This study can be a workbench for the study on the unsolved or partly solved issues in simulations of fluid-conveying pipes. Moreover, it has demonstrated that the predictions in traditional Galerkin method overestimate the natural frequencies, and it becomes more profound in higher-order natural modes at larger internal flow velocities which are of practice significance for dynamic analysis of flexible pipeline systems.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062718\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An Explanation for the Flutter Paradox in the Supercritical Region of a Simply-Supported Fluid-Conveying Pipe
Employing traditional Galerkin method, a coupled-mode flutter is predicted in the supercritical region of simply-supported pipes which constitutes a paradox since the internal flow effect is conservative and there is no energy to sustain the oscillation. Although there is a consensus that the flutter does not exist, the intrinsic mechanism remains to be clarified. This study has found that the internal flow induced Coriolis force term cannot be decoupled in traditional Galerkin method which leads to the dissatisfaction of the convergence conditions required in weighted residual approach (WRA). Moreover, the disparities in the predicted complex frequencies have been witnessed at different base function numbers when the internal flow velocity is sufficiently large. A modified Galerkin method adopting a new set of weighting functions is proposed based on WRA, and the Coriolis force term disappears by use of the orthogonality relations (it is stated that the Coriolis force is not directly omitted). Thus, a convergent solution for the set of residual functions which are identically equal to zeros can be guaranteed. Employing the modified method, the convergence in simulations is confirmed and the flutter phenomenon does not occur. This study can be a workbench for the study on the unsolved or partly solved issues in simulations of fluid-conveying pipes. Moreover, it has demonstrated that the predictions in traditional Galerkin method overestimate the natural frequencies, and it becomes more profound in higher-order natural modes at larger internal flow velocities which are of practice significance for dynamic analysis of flexible pipeline systems.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.