IIA型管柱的几何流量

IF 1.8 2区 数学 Q1 MATHEMATICS
Teng Fei, D. Phong, Sebastien Picard, Xiangwen Zhang
{"title":"IIA型管柱的几何流量","authors":"Teng Fei, D. Phong, Sebastien Picard, Xiangwen Zhang","doi":"10.4310/cjm.2021.v9.n3.a3","DOIUrl":null,"url":null,"abstract":"A geometric flow on $6$-dimensional symplectic manifolds is introduced which is motivated by supersymmetric compactifications of the Type IIA string. The underlying structure turns out to be SU(3) holonomy, but with respect to the projected Levi-Civita connection of an almost-Hermitian structure. The short-time existence is established, and new identities for the Nijenhuis tensor are found which are crucial for Shi-type estimates. The integrable case can be completely solved, giving an alternative proof of Yau's theorem on Ricci-flat K\\\"ahler metrics. In the non-integrable case, models are worked out which suggest that the flow should lead to optimal almost-complex structures compatible with the given symplectic form.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Geometric flows for the Type IIA string\",\"authors\":\"Teng Fei, D. Phong, Sebastien Picard, Xiangwen Zhang\",\"doi\":\"10.4310/cjm.2021.v9.n3.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A geometric flow on $6$-dimensional symplectic manifolds is introduced which is motivated by supersymmetric compactifications of the Type IIA string. The underlying structure turns out to be SU(3) holonomy, but with respect to the projected Levi-Civita connection of an almost-Hermitian structure. The short-time existence is established, and new identities for the Nijenhuis tensor are found which are crucial for Shi-type estimates. The integrable case can be completely solved, giving an alternative proof of Yau's theorem on Ricci-flat K\\\\\\\"ahler metrics. In the non-integrable case, models are worked out which suggest that the flow should lead to optimal almost-complex structures compatible with the given symplectic form.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2021.v9.n3.a3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2021.v9.n3.a3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

在IIA型弦的超对称紧化的基础上,引入了$6$维辛流形上的一个几何流。基础结构原来是SU(3)holonomy,但关于几乎埃尔米特结构的投影Levi-Civita连接。建立了短时存在性,并发现了Nijenhuis张量的新恒等式,这对Shi型估计至关重要。可积情况可以完全求解,给出了Ricci平坦K\“ahler度量上的Yau定理的另一个证明。在不可积情况下,建立了模型,表明流应该导致与给定辛形式兼容的最优几乎复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric flows for the Type IIA string
A geometric flow on $6$-dimensional symplectic manifolds is introduced which is motivated by supersymmetric compactifications of the Type IIA string. The underlying structure turns out to be SU(3) holonomy, but with respect to the projected Levi-Civita connection of an almost-Hermitian structure. The short-time existence is established, and new identities for the Nijenhuis tensor are found which are crucial for Shi-type estimates. The integrable case can be completely solved, giving an alternative proof of Yau's theorem on Ricci-flat K\"ahler metrics. In the non-integrable case, models are worked out which suggest that the flow should lead to optimal almost-complex structures compatible with the given symplectic form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信