pt对称矩阵拟精确可解Razhavi势

A. Nininahazwe
{"title":"pt对称矩阵拟精确可解Razhavi势","authors":"A. Nininahazwe","doi":"10.4236/ojm.2020.102002","DOIUrl":null,"url":null,"abstract":"A PT-symmetric Hamiltonian associated with a trigonometric Razhavi potential is analyzed. Along the same lines of the general quasi-exactly solvable analytic method considered in the [1] [2] [3], three necessary and sufficient algebraic conditions for this Hamiltonian to have a finite-dimensional invariant vector space are established. This PT-symmetric 2 x 2 -matrix Hamiltonian is called quasi-exactly solvable (QES).","PeriodicalId":57566,"journal":{"name":"微观物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PT-Symmetric Matrix Quasi-Exactly Solvable Razhavi Potential\",\"authors\":\"A. Nininahazwe\",\"doi\":\"10.4236/ojm.2020.102002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A PT-symmetric Hamiltonian associated with a trigonometric Razhavi potential is analyzed. Along the same lines of the general quasi-exactly solvable analytic method considered in the [1] [2] [3], three necessary and sufficient algebraic conditions for this Hamiltonian to have a finite-dimensional invariant vector space are established. This PT-symmetric 2 x 2 -matrix Hamiltonian is called quasi-exactly solvable (QES).\",\"PeriodicalId\":57566,\"journal\":{\"name\":\"微观物理学期刊(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微观物理学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ojm.2020.102002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微观物理学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ojm.2020.102002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了与三角Razhavi势相关的PT对称哈密顿量。根据[1][2][3]中考虑的一般拟精确可解解析方法,建立了该哈密顿量具有有限维不变向量空间的三个充要代数条件。这个PT对称的2x2矩阵哈密顿量称为拟精确可解(QES)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PT-Symmetric Matrix Quasi-Exactly Solvable Razhavi Potential
A PT-symmetric Hamiltonian associated with a trigonometric Razhavi potential is analyzed. Along the same lines of the general quasi-exactly solvable analytic method considered in the [1] [2] [3], three necessary and sufficient algebraic conditions for this Hamiltonian to have a finite-dimensional invariant vector space are established. This PT-symmetric 2 x 2 -matrix Hamiltonian is called quasi-exactly solvable (QES).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信