体积和表面热处理对30HGSA钢组织和性能的影响

IF 0.4 Q4 PHYSICS, MULTIDISCIPLINARY
B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova
{"title":"体积和表面热处理对30HGSA钢组织和性能的影响","authors":"B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova","doi":"10.31489/2021ph4/16-24","DOIUrl":null,"url":null,"abstract":"The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Volume and Surface Heat Treatment on the Structure and Properties of Steel 30HGSA\",\"authors\":\"B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova\",\"doi\":\"10.31489/2021ph4/16-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2021ph4/16-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2021ph4/16-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

该工作介绍了体积和表面热处理对30HGSA钢的结构相态、硬度和耐磨性影响的比较研究结果。采用电解质等离子体法进行表面硬化。通过加热至900°C的温度,然后在水中和油中冷却,对样品进行整体淬火,淬火后的一些样品在510°C温度下退火。通过金相和X射线组织分析,对30HGSA钢试样的组织相态进行了研究。根据球盘方案进行了显微硬度测量、摩擦学试验,并测定了样品的耐磨性。通过金相和X射线组织分析,确定电解等离子淬火后形成渗碳体含量较低的细针状马氏体,在水和油中体积淬火后形成粗针状马氏体。经测定,体积淬火后显微硬度增加到400-460 HV,随后的退火导致硬度降低到330-360 HV。结果表明,由于形成了细小的针状马氏体,电解质等离子体表面硬化使显微硬度提高了2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Volume and Surface Heat Treatment on the Structure and Properties of Steel 30HGSA
The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信