B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova
{"title":"体积和表面热处理对30HGSA钢组织和性能的影响","authors":"B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova","doi":"10.31489/2021ph4/16-24","DOIUrl":null,"url":null,"abstract":"The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.","PeriodicalId":29904,"journal":{"name":"Bulletin of the University of Karaganda-Physics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Volume and Surface Heat Treatment on the Structure and Properties of Steel 30HGSA\",\"authors\":\"B. Rakhadilov, D. Baizhan, Zhuldyz Sagdoldina, L. Zhurerova, R. Kozhanova, P. Kowalewski, G. Yerbolatova\",\"doi\":\"10.31489/2021ph4/16-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.\",\"PeriodicalId\":29904,\"journal\":{\"name\":\"Bulletin of the University of Karaganda-Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the University of Karaganda-Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2021ph4/16-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the University of Karaganda-Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2021ph4/16-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of Volume and Surface Heat Treatment on the Structure and Properties of Steel 30HGSA
The work presents the results of a comparative study of volumetric and surface heat treatment impact on the structural-phase states, hardness, and wear resistance of steel 30HGSA. Surface hardening was conducted by the electrolyte-plasma method. Bulk quenching of the samples was carried out by heating to a temperature of 900 °C, followed by cooling in water and oil, and some of the samples after quenching were annealed at a temperature of 510 °C. The structural-phase states of 30HGSA steel samples were studied by metallographic and X-ray structural analysis. There were carried out the microhardness measurements, tribological tests according to the ball-disk scheme, as well as was determined the resistance of the samples to abrasive wear. It was determined that after electrolytic-plasma hardening, fine-acicular martensite with a small content of cementite is formed on the basis of metallographic and X-ray structural analyzes, and coarse-acicular martensite is formed after volume quenching in water and oil. It was determined that the microhardness increased to 400-460 HV after volume quenching, and subsequent annealing leads to a decrease in hardness to 330-360 HV. It was revealed that the electrolyte-plasma surface hardening leads to an increase in microhardness up to 2 times due to the formation of fine-acicular martensite.