{"title":"层合复合材料的线性四边形壳单元","authors":"Alireza Beheshti, Reza Ansari","doi":"10.1007/s10999-022-09624-7","DOIUrl":null,"url":null,"abstract":"<div><p>The concentration of the present investigation is on the development of a quadrilateral shell element for the deformation analysis of composite laminates. For this purpose, a higher-order shell model with 12 parameters is adopted along with the three-dimensional state of stress. The principle of virtual work is implemented to derive the stiffness matrix and the load vector for the four-node shell element. In order to verify the performance of the higher-order shell element developed herein for the treatment of laminated composites, some benchmarks are solved and compared with solutions available in the literature.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 1","pages":"187 - 206"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-022-09624-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A linear quadrilateral shell element for laminated composites\",\"authors\":\"Alireza Beheshti, Reza Ansari\",\"doi\":\"10.1007/s10999-022-09624-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The concentration of the present investigation is on the development of a quadrilateral shell element for the deformation analysis of composite laminates. For this purpose, a higher-order shell model with 12 parameters is adopted along with the three-dimensional state of stress. The principle of virtual work is implemented to derive the stiffness matrix and the load vector for the four-node shell element. In order to verify the performance of the higher-order shell element developed herein for the treatment of laminated composites, some benchmarks are solved and compared with solutions available in the literature.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"19 1\",\"pages\":\"187 - 206\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10999-022-09624-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-022-09624-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09624-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A linear quadrilateral shell element for laminated composites
The concentration of the present investigation is on the development of a quadrilateral shell element for the deformation analysis of composite laminates. For this purpose, a higher-order shell model with 12 parameters is adopted along with the three-dimensional state of stress. The principle of virtual work is implemented to derive the stiffness matrix and the load vector for the four-node shell element. In order to verify the performance of the higher-order shell element developed herein for the treatment of laminated composites, some benchmarks are solved and compared with solutions available in the literature.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.